
ADAI16 161 MOCKE SCHOOL OF ELECTRICAL ENGINEERING PH4ILADELPHIIA P-ETC F/6 9/2
MODEL PROGAM GENRATOR$ SYSTEM AND PRGRMING DOCUMENTATIO. -- ETC(U)
MAY 82 K LU M00014-76-C-0616

OCLASSIF19EONI , fffmlflflfllflfl,..f...
IIIIIIIIIIIIII.f..f
IEEIIIEIIEEEI

11111 1.0 112 2

" °~MA iiliz2.0

11111I25 ~fj . 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF SIANDARDS 1963-A

'-4

Technical Report

moDEL PrdUGA GENEATOR:
SYSTE4 AND pROGRAN4ING DOCtnEWTATION

Spring 1982 version

by

Kang-Sen Lu

UNIVERSITY of PENNSYLVANIA

The Moore School of Electrical Engineering

PHILADELPHIA, PENNSYLVANIA 19104

Appwrod for pbIc rullw
,.3Ditribution UnllrUfted

f11

p... I, e

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W mh' Data ffntered

REPORT DOCUMENTATION PAGE BEFORE FOMT OW
I. REPORT NUMBER 12.,OVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

4. TITLE (and Subtitle). S. TYPE OF REPORT & PERIOD COVERED

Model Program Generator: System and Technical Report
Programming Documentation

6. PERFORMING ORG. REPORT NUMUER

Moore School Report
7. AUTHOR(s) I. CONTRACT OR GRANT NUMR111)

Kang-Sen Lu N00014-76-0 -0416

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TAK

University of Pennsylvania, Moore School of AREA & WORK UNIT NUMBR$

Electrical Engineering, Department of Computer
Science, Philadelphia, Pennsylvania 19104 IVIA O /i-L

II. CONTROLLING OFFICE NAMN
r

AND ADDRESS 12. REPORT OATS

Office of Naval Research May, 1982
Information Systems Program, Code 437 IS. NUMBEROF PAGES

Arlington, Virginia 22217 159 pages
14. MONITORING AGENCY NAME & AODRESS(tI dliffermt frtm Contlemlinll Office) 15. SECURITY CLASS. (of this teport)

UNCLASSIFIED
ISa. DECLASSIFrICATION/DOWNGRAOINC-

SCHEDULE

1. DISTRIBUTION STATEMENT (of this Report)

General. Distribution

17. DISTRIBUTION STATEMENT (of the abetract entered in Stock 0. If differentt be. ReporE)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Conthwe an reviree If nesery aw Idniti* by block tminbot)

Automatic Program Generation, Non-Procedural Languages, Model,
Very High-Level Languages, Program Efficiency

20.USTRACT (Continue a revers aide It neoessy mE idemmtfirl by Wock nmaber)

-This document describes the algorithms and mechanisms of the MODEL Processor
which is a software system performing a program writing function. It also
documents the program structure and procedures of the Processor. The MODEL
Processor has been designed to automate the program design, coding and debug-
ging of software development, based on a non-procedural specifications of a
program module in the MODEL language. A program module is formally described
and specified in the MODEL language, whose statements are then submitted to the

Do FO, 1473 EOITION OF I NOV , IS OSOLETE

S/ 0102-014-6601 1 UNCLASS)FTFI)
SECURITY CLASSIFICATION OF TNIS PAGE (D

I

UNCLASSIFIED
.-. L.UqITY CLASSIFICATION OF THIS PAGEO atl Data Entme)r

Processor. The set of MODEL statements describing a program module is
referred to as a specification. The Processor, performs the analysis
(including checking for the completeness and consistency of the entire
specification), program module design (including generating a flowchart-like

sequence of events for the module), and code generation functions, thus
replacing the tasks of an application programmer/coder. The Processor's
capability to process a non-procedural specification language is built on
application of graph theory to the analysis of such specification and to
the program generation task.

Y Another important function of the Processor is to interact with the
specifier to indicate necessary supplements or changes to the submitted
statements.-

-The Processor produces a complete PL/l program ready for compilation as
well as various reports concerning the specification and the generated
program The Processor output reports include a listing of the specification,
a cross ference report, subscript range report, a flowchart-like report
of the gerated program, and a listing of the generated program.

Aco*orS IonFor

* - r(4 -

-

Dist

O1i

SICURITY CLAWFIICATION OF THIS PAGK(ftom Date 3tnra0

CHAPTER I OVERVIEW

CHAPTER 2 SYNTAX AND SMANTICS OF THE NODEL LANGUJAGE

*2.1 STRUCTURE OF A PROGRAM SPECIFICATION 8
2.2 DATA DESCRIPTION STATEMNTS . * 9
2.2.1 DATA TYPES 10
2.2.2 DATA STRUCTURES 11
2.2.3 I/O RELATED DATA AGGREGATES 12
2.3 ASSERTIONS 13
2.3.1 SIMPLE AND CONDITIONAL ASSERTIONS 13
2.3.2 SUBSCRIPT EXPRESSIONS 14
2.4 CONTROL VARIABLES 16

CHAPTER 3 SYNTAX ANALYSIS PROGRAM

3.1 EBNF, SAPG, AND THE SAP 22
3.1.1 SPECIFICATION OF MODEL USING EBNF AND THE SAPG . 22
3.1.2 HOW THE SAPG PRODUCES THE SAP 30
3.2 SUPPORTING SUBROUTINES FOR EBNF OF MODEL31
3.2.1 THE LEXICAL ANALYZER 33
3.2.2 STAIFAE SEiNTICS ANALYSIS 36
3.2.3 ERROR MESSAGE STACKING ROUTINE 37
3.2.4 ENCODING USER STATEMENTS 41
3.2.5 STATEMENT STORAGE ROCflTNES 46
3.2.6 HOUSEEEPING ROUTINES 48

3.2.7 AN INDEX TO SAP ROUTINES 49
3.3 THE STRING STORAGE AND RETRIEVAL SUBSYSTEM 49

3.3.1 INTRODUCTION 49
3.3.2 THE DIRECTORY AND STORAGE STRUCTURE 50
3.3.3 STORAGE ENTRIES FORMAT FOR MODEL STATEIMENTS . . 53
3.3.4 THE STORE PROCEDURE'...... ... 56
3.3.5 THE RETRIEVE PROCEDURE 5
3.3.6 STORAGE STRUCTURES FOR ASSERTION STAT4EM . . 61
3.3.6.1 THE SYNTAX TREE FOR AN ASSERTION 61
3.3.6.2 THE STRUCTURE OF NON-TERMINAL NODES 61
3.3.6.3 THE STRUCTURE OF TERMINAL NODES 62
3.3.7 THE SYNTAX TREE CONSTRUCTION ROUTINES65

CHAPTER 4 PRECEDENCE ANALYSIS

4.1 INTRODUCTION 67
4.2 REPRMSENTATION OF PRECEDENCE RELATIONSHIPS 68
4.2.1 DICTIONARY 63
4.2.2 THE ARRAY GRAPH 72
4.2.2.1 DATA STRUCTURE OF EDGES 73
4.2.2.2 DATA STRUCTURE OF SUBSCRIPT EXPRESSION LIST . . 73
4.3 CREATION OF THE DICTIONARY (CRDICT) 74
4.4 CREATION OF ARRAY GRAPH. 75
4.4.1 ENTER HIERARCHICAL REIATIOINSHIPS (ENHfRREL) . . . 76

4.4.2 ENTER DEPENDENCY RELATIONSHIPS (ENEER) 1
4.5 FINDING IMPLICIT PREDECESSORS (ENrDP) 64

Page 2

4.6 DIM(ENSION PROPAGATION (DIMPROP) 94
4.7 FILLING ISSING SUBSCRPTS IN ASSEJTIOuS (FILLSCJB) 96

CIAPTR 5 RANGE PROPAGATION

5.1 INTRODUCTION
5.2 LANGOAGE CONSTRECTS FOR RANGE SPECIFICATION . . . 89
5.3 DEFINITIONS 90
5.4 DiSCUSSiOn OF RANGE PROPA ATION 91
5.4.1 CRITERIA FOR RANGE PROPAGaTrO. 91
5.4.2 PRIORITY OF RANGE PROPAGATION 92
5.4.3 REAL ARGJMENTS OF RANGE FUNCTIONS 94
5.5 RANGE PROPAGAIION ALGORITH (RNGPROP) 99
5.6 DATA DEPENDENCY OF RANGE INFORMATION 104

CHAPTER 6 SCHEDULING

6.1 OVERVIEW OF SCHEDULING 1O5
6.1.1 A BASIC APPROACH TO SCHEDULING 106
6.1.2 EFFICIENT SCHEDULING. 106
6.1.3 OUTLINE OF Tim CHAPTER.. 107
6.2 ANALYSIS OF NSCC 107

6.2.1 CYCLES IN 'LUE ARRAY GRAPH 108
6.2.2 EICLrosNG A 3SCC WITHIN A LOOP109

6.2.3 DECOMPOSING A 1SCC THROX DELETION OF E . . 111
6.2.4 OTHER APPR ACHES TO DECOMPOSING AN MSCC 112
6.2.5 A SIMPLE SCHEDULING ALGORITHM. 113
6.3 MERGER oF COMoNT To ATIAN HIGHER E"FCIENCY . 114
6.3.1 MERGER OF COMPONENTS WITH THE SAME RANGE 114
6.3.2 MERGER OF COMPOETS WIaTH SUBLrIEABtLY RELATED

RANGE 116
6.4 MEMORY EFFICIENCY 117
6.4.1 EVALUATION oF MEDRY USAGE. 119
6.4.2 MDRY PENALTY 121
6.5 A HEURISTIC APPROACH To nmDRY-ErICrENT

SCHEULING 122
6.6 THE SCHEDULING ALGORITHM. 126

CHAPTER 7 CODE GENERATION

7.1 OVERVIEW OF THE CODE GENERATION PRICESS136

'7.2 THE IJOR PR0CEDCJRES FOR CODE GENERATION.138

7.2.1 CODEGEN - THE NAN PROCEDURE..138
7.2 .2 GENERATE - INTERPRETING SCHEDULE ELEMENTS . . 138

7.2.3 GENDO - TO INITIALE THE SCOPE OF ITERATIONS . 139
7.2.4 GENEND - TO TERMINATE THE SCOPE OF ITERATIONS 140
7.2.5 COND.BLK - INITIATE A CONDITIONAL BLOCK . . . 140

7.2.6 COND._END - TERIUNATE A CONDITIONAL BLOCK . . . 141

7.3 GENJODE - CODE GENERATION FOR A NOOE 141
?7.3.1 PRGGRA HEADING 141

7.3.2 FiS.. 141
7.3.3 RECORDS 142

.4r

Page 3

7.3.4 FIEM. 142
7.3.5 ASSERIONS 143
7.4 GEMRSSR - GENERATING CODE FOR ASSEIIONS143
7.4.1 TRANSFOINO CONDITIONAL EXPRZSSIONS143
7.4.1.1 SCN (IN) 143
7.4.1.2 EXTRhC-COND(RO',COND, ,E, RIGHT.) 144
7.4.2 PINT - TRANSVORUING THE ASSERTION rI STRING

FOR 145
7.5 GEIOCD - GENERATING IPUpT/lOrw'PUT CODE146
7.6 PACKING AND UNPACKING 149
7.6.1 PACK - PACKING THE OUTPUT FIETS. 149
7.6.2 GzI''D - UNPACKING LHE INPUT VIELDS 150
7.6.3 'IELW - PACKING AND UNPACKING FIELDS150
7.7 GENERATING THE PF40GRAII ERROR VILE 151
7.8 GI1DCL - GENERATING PfL/ DECLARATION151
7.8.1 DECLARESTRUCTURE - DECLARING A STRUCTURE . . . 152
7.8.1.1 DC-LSTR(N, LEVEL, SOX) 152
7.9 CGSUH - CODE GENERATION CONCLUSION 153

LIST OF FIGURES

Figure 1.1 The Overall Procedure For Use of MODEL 2

Figure 1.2 Phases of the O0EL IT Processor 4

Figure 1.3 Major Modules of the NDDEL Processor7

Figure 3.1 lDck Diagram of SAPG and SAP 23

Figure 3.2 Definition of IODEL language in EBNF/WSC.25

Figure 3.3 More Detailled View Of SAPG and SAP With

Supporting Subroutines32

Figure 3.4 Sample Directory and Storage entries 52

Figure 3.5 Exauple of Retrieval Mechanism60

Figure 3.6 Syntax Tree For Example - Assertion64

Figure 4.1 Organization of the dictionary 69

Figure 4.2 Tree representation of data structure75

Figure 4.3 Precedence relationship of a data structure77

Figure 4.4 The edges in an output sequential file s0

Figure 4.5 The data dependency of an assertion 83

Figure 5.1 Example of Range Propagation 94

Figure 5.2a A range array with real arguments 95

Figure 5.2b Flowchart of 5.2a 95

Figure 5.3 Real argument lists of node subscripts97

Figure 5.4 Transposition of real arguments of a range array . . . 98

Figure 5.5 The order of real arguments in the real argument list 99

Figure 6.1 Example of cycles in the Array Graph 108

Figure 6.2 Remove I-k edges in a loop 112

Figure 6.3 Closure of a met of components115

Figure 6.4 Example of indirect sublinear indexing in subscript

expression116

S-4-

4

I

Figure 6.5 Two Schedules for copying a file . 116

Figure 6.6 Zffect of window dimension on the outer loop over

dimensions on the inner loop. 120

Figure 6. 7 Example of computing mmory penalty 122

Figure 6.8a An Array Graph to be scheduled 125

Figure 6.Sb The outer level loop structure.125

Figure 6.9 Various components of the scheduling algorithm 127

Figure 7.1 Overview of the Code Generation Phase 136

Figure 7.2 Components of Generating PL/I Code 137

'a

LIST OF TABLES

Table 3.1 Character Classes for MODEL, Language 34

Table 3.2 State Transition Matrix for MODEL Lexical Analyser . . . 35

Table 3.3 Lexical Analysis Actions36

Table 3.4 Semantics Checking Routines 36

Table 3.5 ERROR MESSAGES 38

Table 3.6 ENCODING/SAVING ROUTINES42

Table 3.7 STORING ROUTWINES 49

Table 3.9 HOUSEKEEPTNG ROUTINES 49

Table 3.9 Storage entries Format for MODEL54

Table 3.10 The functions recognized by the MODEL 66

Table 4.1 Attributes in the Dictionary 70

Table 7 .1 The Various cases of program I/O control148

4

-6-

CHAPTER 1

OVERVIEW

This document describes the algorithms and mechanisms of the MODEL
Processor, which is a software system performing a program writing
function. The MDEL Processor (hereafter called the Processor) has been
designed to automate the program design, coding and debugging of
software development, based on a non-procedural specifications of a
program module in the MODEL language. As shown in Figure 1.1, a program
module is formally described and specified in the MODEL language, whose
statements are then submitted to the Processor. The set of MODEL
statements describing a program module is referred to as a
specification. The Processor, performs the analysis (including checking
for the completeness and consistency of the entire specification),
program module design (including generating a flowchart-like sequence of
events for the module), and code generation functions, thus replacing
the tasks of an application programmer/coder. The Processor's
capability to process a non-procedural specification language is built
on application of graph theory to the analysis of such specification and
to the program generation task.

Another important function of the Processor is to interact with the
specifier to indicate necessary supplements or changes to the submitted
statements.

The Processor produces a complete PL/l program ready for
compilation as wll as various reports concerning the specification and
the generated program. The Processor output reports include a listing
of the specification, a cross-reference report, subscript range report,
a flowchart-like report of the generated program, and a listing of the
generated program, all to be described fully later.

-1-

II

Source Data~Step I

Data Processing
Requirements

Target Data
Step 3:

Keyboard Key In
Term'|nal and run MODEL

Compose Description

3ER MOD EL Statement Data Descript' lo

System

e ! tpROGRAnayi Stef~

Ambiguities
Inconsistencies

and Program Documentation

PL/

COMPILATION Compile and Load

.Change SpecificatIon runPrga

SD~taPROGRAM

Target
Data

Figure 1.1 The Overall Procedure For Use of MDEL

Processing of a specification written in DDEL by the Processor

consists of four phases shown in the system flowchart of Figure 1.2,
which is the first refinement of Figure 1.1. Some of these phases

represent adaptations of known but state-of-the-art technology, while
other phases involve more novel innovations in analysis of the

-2

specification and in the design and code generation for the application

* program.

Each of the four phases depicted in Figure 1.2 is discussed below.
Phases IL _n Analysis of the 3DDEL Module Specification

In this phase, the provided MODEL specification is analyzed to find
syntactic and some semantic errors. This phase of the Processor is
itself generated automatically by a meta-processor called a Syntax
Analysis Program Generator (SAPG), whose input is syntax rules provided
through a formal description of the MDEL language in the EBNF language
(yet to be discussed). In this manner, changes to the syntax of MODEL
during development can be mode more easily.

"1

I -3-

MODEL REPORTS
STATEMETS

PHASE I CROSS REFERENCE
SYNTAX ANALYSIS SOURCE STATMIENTS
STORAGE & SYNTAX ERRORS (HALT IF ANY)

CODING

SPHANE II
NETWORK GENERATION DIAGNOSTICS (HALT IF ERRORS)

ANALYSIS RANGE REPORT

PHASE III
SEQUENCE AND ITERATION FLOWCHART
ANALYSIS FLOWCHARTING FORMATTED SOURCE LISTING

i PHASE IV

CODE GENFRATION PL/1 LISTING

PL/ 1
PROGRAM

Figure 1.2 Phases of the MODEL I Processor

A further task of this phase is to store the statements in a
simulated associative memory for ease in later search, analysis, and
processing. Some needed corrections and warnings of possible errors are
also produced in a report for the user. Also, a cross-reference report
is produced.

4-

A description of the syntax and statement analysis phase is covered

in detail in Chapter 3.

Pha It t Analysis o S2ecification

In this phase, precedence relationships between statements are
determined from analysis of the 3DDEL data and assertion statements.
The specification is analyzed to determine the consistency and
completeness of teh statements. Each MODEL statement may be considered
to be an independent stand-alone statement. The order of the user's
statement is of no consequence. However, in analysis of the statements,
precedenece relationships are determined based on statement components.
These relationships are used to form the nodes and directed edges of an
array (yet to be discussed) on which completeness, consistency,
ambiguity, and feasibility of constructing a program can be checked.
Various omissions or errors are corrected automatically, especially in
connection with use of subsctipts. Reports are produced for the user
indicating the data. assertions, or decisions that have been made by the
Processor, or contradictions that have been found. In addition, a
report showing the range of each subscript is generated.

Explanation of this process is covered in Chapter 4 and S.

Phase 3: Automatic Proram Desian and Generation of Sequence and
Control Logic

This phase of the Processor determines the sequence of execution of
all events and iterations implied by the specification, using graph
theory techniques. It determines also the sequence and control logic of
the desired program. The result of this phase is a flow of events,
sequenced in the order of execution. Thus, the output of this phase is
similar to a program flowchart-like report. At the end of this phase it
is also possible to produce a formatted report of the specification.

This phase is presented in detail in Chapter 6.

Phase 4: Code Generation

AT this point in the process it is necessary to generate, tailor,
and insert the code into the entries of the flowchart to produce the
program. In particular, read and write input/output commands are
generated whenever the flowchart indicates the need for moving records.
The assertions are developed into PWl assignment statements. Eherever
program iterations and other control structures are necessary, program
code for them is generated. Declarations for object program data
structures and variables are generated. Code is also generated for
recovery from program failures when bad data is encountered during
program execution. The product of this phase is a complete program in a
high level language, PL/I, ready for compilation and execution. A
listing of the generated program is produced.

-5-

- --

The remainder of this report expands on the above mentioned phases.
Chapter 2 discusses the syntax and semantics of each type of IOEL
statements. Figure 1. 3 provides a tree diagram of the major modules.
The name of the modules in this diagram are referenced throughout the
remainder of this report wherever the corresponding task in explained.
As seen at the top of Figure 1. 3, a MNITOR governs the execution of the
different phases of the Processor, and does not allow succeeding phases
to proceed without the success of the previous phases. At the second
level of Figure 1.3, the major phases of the Processor are named (1) SAP
(Syntax Analysis Program), Chapter 3; (2) NETGEN (Network Generation)
and NETANL (Network Analysis), Chapter 4 and 5; (3) SCHEDULE (Schedule
events and generate flowchart), Chapter 6; and (4) CODEGDE (Code
Generation), Chapter 7. Below this level of Figure 1 .3, the diagram
shows the names of the modules subordinate to each of these phases.
Each of these subroutines is discussed throughout this report.

-6

IJ

... ,.-----*'-.~ .- , El

* ~

"'S

51
C I ____

-a
-. .=~l--, ________________________

t4~~
* £ I

____ ______ t .,~II
I.

I
* I --

I tililul
I-'.'.'

i *1 f.

* L

* * Ibil

S

Figure 1 * 3 MAjOr ModulOC of the 3~O3L ProaeWWorr ~
I.

Ii -7-

.4

~

CHRPT1R 2

SYNTAX AND SEMANTICS OF THE MODEL tMGUAGE

2.1 SIWRCTURE OF A PROGRAM SPECIFICATION

A program specification written in the MODEL language consists of
three major parts: program header, data description, and assertions.
The program header specifies the name of the program and the external
files which store the input or output data of the program. The data
description statements are used to specify the data structure of the
input or output files and the structure of the intermediate results.
The assertions are used to define the values of the intermediate or
output variables specified in the data description statements. Although
the user is encouraged to group statements together and order the parts
in the sequence mentioned above, the statements in a program
specification can be put in any order, i.e. the order of the statements
is irrelevant to the meaning of the specification. That is one reason
why we call MODEL a non-procedural programeing language. In this
section we discuss the statements in the program header. We will
discuss in section 2.2 the data description statements, and in section
2.3 the syntax and the semantics of the assertions. We will discuss in
section 2.4 the use of control variables.

Only the basic ODEL language is described here. Short-hand and
high level dialects are not described as they are always translated
automatically into the basic language. The syntax rules of the MODEL
statements will be defined with extended BNF notation. Identifiers
enclosed by the angle brackets ('<' and '') are non-terminal symbols.
The metazymbols used include:

-.1 1. ::-, it is read as 'is-defined-by'.
2. C...], a pair of square brackets is used to enclose a string which is

optional.
3. I, a vertical bar is used to separate alternatives.
4. (...)}, a pair of braces followed by an asterisk is used to enclose a

string which can repeat any times (including zero).

The program header consists of three types of statements, namely
the moul statement, the source file statement, and the target fLW
statement.

-8-

Module Statement

The syntax rule for the module statement is as follows.
(module-statement) I:

MODULE i cidentifier• p

The user-chosen identifier is used as the name of the program being
specified.

Source File Statement

The syntax rule for the source file statement is as follows.
-csource-file-statement)-ts

U*RCE C FILES I FILE] i ,identifier (, cidentifier) p

The source file statement consists of a list names of files which
serve as the input files of the program. The source files are assumed
stored in external storage devices.

Target File Statement

The syntax rule for the target file statement is as follows.
ctarget-file-statement.%: s-

T[P4T [FILES I FILE] 4 identifier, , <identifier))* p

The target file statement lists the names of files which serve as
the output files of the program. The output files are assumed to be on
external storage and they serve to retain the computation result for
future use.

2.2 DATA DESCRIPTION STATEMENTS

In a non-procedural programming language every variable can only
have a single value. Therefore, different variable names should be
declared for different data involved in the computation. The data
structures in external files, or the schemata of files, can be described
in MDEL with data description satatements. Logically related variables
may also be grouped together as in PL/. The user must also declare the
data types of the components of a variable in data description
statements. The MODEL language has been designed to relieve the user of
concern for I/O control. In general, I/O can be a complicated part of a
programing language. A few simple mechanism have been included in the
data description statements to ease the I/O programing task. Examples
include the ability to describe file organization and to indicate a key
field for direct accessing a record. In section 2.2.1 we will discuss
the way to specify the data type of a variable; in section 2.2.2, the
way to describe data aggregates; and in section 2.2.3, the mechanims
used for I/O related programing.

- 9-

2. 2.1 DATA 'MPES

The smallest unit of data in a program is a field. A field may
contain a datum of some type supported by the MODEL language. The
available data types includes picture, character, bit string, and
numbers. It is the user's responsibility to select a data type for each
field.

Field Declaration Statement

The syntax rule for a field declaration statement is as follows.
. field-declaration-statement : :-

cidentifier, (IS] <field. cdata-type>
C field> Ia- F I VIEW
4data-type> :- 4typeo cleng-specb
cleng-spec) ::- (,in-length, C : cmax-length,])
(min-length) . a- cinteger)
:type,::- cpic-desc> I 4string-spec. I 4num-speco
pic-desc) :- <pic-type> ' <string>
cpic-type) :s- PIC I PICTURE
4string-spec 3 : t- CHAR I CHARACTER I BIT I NUN I NUMERIC
<num-spec) st- cnum-type. [cfixflt>]
chUm-typ) : :- BIN I BINARY I DEC I DECI4AL
ofixf1t) t:-FIX I FIXED I FL I FLOAT I FLT

4max-length> s:- <integer>

A character string may be of fixed length or variable length. For
a fixsd length character string the length in byte units should be
specified in the type declaration. A variable length character string
is specified through declaring the range of the possible length of the
string. When a field X of variable length string occurs in an input
file, its length should be specified by an associated control variable
called LEN.X.

E leI

A IS FIELD CHAR(6)
B IS Fl,1 CMR(O O)i

The field A is a string of six characters and the field B is a
variable length character string with maximum length ten. The actual
length of the field B should be specified by a control variable called
LEN.B in som assertion.

The available operations for manipulating character strings include
lexicogaphic comparison, concatenation, and extracting substring. The
discussion for the character string is also applicable to the bit string
data type.

The data types for numeric data include picture, floating point
decimal, floating point binary, fixed point decimal, and fixed point
binary. The operations applicable to numeric data are arithmetic
operations, comparison, and conditional definition. It should be noted
that the picture and character typed variables have a printable
representation. Therefore, it is suitable for data contained in

- 10 -

reports. Other numeric data types are generally used for the data
stored in the computer system. The PVI target language incorporate
extensive type conversion and therefore the user is generally relieved
of this concern.

2.2.2 DATA STRCTURES

Usually there are two ways to group logically related data together
to form data structure. An arr contains homogeneous data elements and
a structure contains heterogeneous data elements. In MDEL a
generalized data aggregate can be used to specify arrays and structures.
The data aggregate is called a arouo or a record in MODEL language.

Grou PD~atKion Statement

The syntax rule for the group declaration statement is as follows.
,group-declaration-statement, : -

cidentifier, [IS3) group> (cmember-list)
cgroup, ::- GRP I GROUP
cmember-list, ::- <member [, member>)*
,member, ::- <identifier> ((occspec>)
4occspec, si- * I ,minocc, (maxocc,]
4minocc> ::- <integer)
4nmaocc> : :- tinteger>

In the group declaration statement an identifier is declared as a
data group which contains a list of members. Each member may optionally
repeat some number of times. If a member repeats, it is considered as
an array of one dimension more than the group containing it. There are
three ways to specify the number of repetitions over a dimension of an
array. If the number of repetitions is a constant, then the constant
can be specified along with the array name. When the number of
repetitions is not fixed but the user knows the maximum of it, he can
specify a range for the number of repetitions in the group statement.
If the user does not know the maximum, i.e. where the maximum is an
unknown large value, he can denote the range by an asterisk. When the
number of repetitions is not a constant, it can be defined through so
control variables with keyword prefix such as SIZE or END (refer to
section 2.4) or definition may be omitted if it can be detected based on
an end-of-file indication.

The members of a data group can be fields, or some other data
groups. A data group may be declared as an array of arrays. In order
to reference a unit datum of it, the user has to supply as many
subscripts as the number of array dimensions. Thus the member field
becomes a multi-dimensional array.

Exmlet
A IS GROUP (B, C(l0))

S19 FIELD HM 6) ;
C IS GROUP (D(s), 3(1,o0), F(*))

- 11 -

,.

where identifier & is declared as a data group containing two
members 8 and C. Let us assume that & is a zero dimensional variable.
Since C repeats, it is a one dimensional array. Identifier C contains
three members, D, Z, and F. The member D repeats five times, and the
ember Z may repeat a number of times from one to fifty. The member F

has a unknown number of repetitions, so an asterisk is specified as its
number of repetitions. All the members of data group C are two
dimensional arrays.

2.2.3 Z/O RELATED DATA AGGREGATES

In a MODEL specification, the user describes the structures of the
data files with data description statements. The MODEL processor
generates I/O statements automatically for the source and target files
of the program based on the information in data description statements.

The record denlaration statement is syntactically similar to the
group declaration statement. The only difference is that the keyword
GRUP is changed o RECORD. A record corresponds to a unit of data
which can be pysica.ly transferred between external file and main
memory.

The file is the highest-level data structure which could be
declared in a MDDZL specification. It is not allowed to have a
structure above che file. A file structure may consist of substructures
declared w-"th group, record, or field statements. A well structured
file declaration will have the file entity on the top level. Its
immediate descendants (i.e. members) can be declared either as groups
or records. The groups may contains groups, records, or fields.
Finally on the lowest level in the file structure the data should be
declared as fields.

File Declaration Statement

The syntax rule for the file declaration statement is as follows.
tfile-declaration-statement) :S:

eidentiferi (IS] FILE [NA4E] <file-desc
cmember-list,),

(file-des : i-

(EY [NAME] (IS] -identifer,
CORG I 3 org-type)

(org-type: a:- SAN I ISM

A file may have the KEY attribute specified. In that case, the
records in the file are accessed by a part of the record contents. If a
file is keyed, there can only be one record type in the file structure
and one of the field in the record should be declared as the key for
accessing the record. Two types of file organization are supported by
the MODEL language, namely the sequential files and the index sequential
files. A record in an index sequential file can be accessed faster than
in a sequential file if direct accessing is necessary.

- 12 -

Examle:

NODULE: KINSALE;
SOURCE: TRAN, INVEN;
TARGET: SLIP, INVEN;

TRAM iS FILE (SALEREC(*))
SALEREC IS RECORD (CUST$,STOCKS, QATITY);

CUST$ IS FIELWO(CHAR(5));
STOCKS IS FrELD(CHAR(e));
QUANTITY IS FIELD(CHARM 3);)

INVEN IS FILE (INVREC)
KEY STOCKS I
ORG ISA;

InVREC is RECORD(STOCSSALPRICEQOH);
STOCKS Is FIED(CHAR(8));
SALIRICE IS FIELD(NUNERIC())
QOH IS FIED(NUMERIC(s)),

SLIP IS FILE (SLIPREC(*));
SLIPREC IS RECORD (CUSTS,STOCKS,QOANT,PRICECHARGE);

CUST IS FW (CHAR2));
STOCKS IS FIELD(CHAR(16))
QUANT IS IELD (PIC'(ll)Z9');
PRICE IS FIELD (PIC'(lI)Z9');
CHARGE IS FIELD (PIC'(ll)ZV');

2.3 ASSERTIONS

Data description statements define the data structures of the
variables involved in a computation. However, the values of the
variables are defined either automatically by input files or manually by
assertions. Basically an assertion is an equation. On the left hand
side of the equal sign there should be either a simple variable or a
subscripted array name which references an array element. On the right
hand side there can be any arithmetic or logical expression whose value
is used to define the variable on the left hand side. The current
restriction is that the assertion can only be used to define the value
of a field. Operations on the higher level data structures are proposed
to be translated into basic operations (PNPR S0].

2.3.1 SIMPLE AND CONDITIONAL ASSERTIONS

There are two kinds of assertions which can be used to define the
value of a variable, namely simple assertion and conditionl Assertion.
The assertions have the same syntax as an assignment statemnt and a
conditional statement in the PL/I language, respectively. All the
arithmetic and logical operations can be used in composition of

-13-

expressions. In addition, the conditioqal expression of ALGOL language
can be used in composing the expression.

Simple Assertion

The syntax rule for the assertion is as follows.
4assertion> is- ,simple-assertion . I <conditional-assertion>
<simple-assertion, :ti- cvariableo - expression).
4variable. ::- simple-variable, o Isubscripted-variable>

The variable name on the left hand side of an assertion is called
the taraet variable of the assertion as its value is defined by the
assertion. All the variables on the right hand side are called the

ource variables of the assertion since their values are used to
calculate the value of the target variable. in the exasples shown
below, a conditional expression is used to define the value of variable
K.

Example:
1) A - B + 5
2) X(I,J) - 4 I + J
3) N - IF OK THEN 5 ELSE 0

Conditional Assertion

The syntax of the conditional assertion is similar to that of an IF
statement in PL/I.
4coditional-assertion> :

IF <boolean-expression, THEN <assertion.
[ELSE cassertion:]

The conditional assertion has two branches, one after the keyword THEN
and the other after the keyword ELSE. These two branches are
selectively executed according to the truth value of a boolean
expression. Since the purpose of an assertion is to define the value of
a variable, there can only be one target variable in an assertion. In
any case the two branches should define the same target variable.
Therefore, the target variable in any branch of a conditional assertion
should always be the same. It should be noted that the ELSE branch of a
conditional assertion is optional. If it is omitted, the target
variable may be undefined in some cases.

Example:
1) IF I c5 THEN A(I) - B(I)

ELSE A(I) - B(x) + 2
2) ZIP END.X(J) THEN B - X(J)

2.3.2 SUBSCRIPT EXPRESSIONS

The variables used in assertions are either simple variables or
subscripted variables. A specific elmnt of an N dimensional array can
be referenced with the array name followed by N subscript expressions.
In the following we will discuss how the subscript expressions are

14 -i~NOW~

fomed and how they are used in compo inq the assertions.

Subscript expressions are composed of ordinary variables, subscript
variables, an c constants with arithmetic operations. The subscript
variable is a special kind of variable. It does not have structure and
it does not hold one specific value. Instead, a subscript variable
assumes integer values in a range from one up to some positive integer.
If the range for a subscript variable in fixed in the whole program
specification, then the subscript variable in called a global subscript.
on the other hand, if the range for a subscript variable is to be
determined for each assertion, the subscript variable i called a lo2al
su-bcript. There are ten system predefined local subscripts rained SUB1,
S5B2, ..., up to SUBio. There are two types of global subscripts. One
of them has the form of qualifying the name of a repeating data
structure prefixed with the keyword FORECH. The other is created by
declaring an identifier as a global subscript with the subscript
statement.

Subscript Declaration Statement

The syntax rule for the subscript declaration statement is as
follows.
,subscript-declaration-statement, t:-

cidentifier> IS csubscript> C (<occspec-)]
<subscript> :t- SUBSCRIPT I SUB

The subscript expressions are classified into the following types
according to their forms. In the following, let I denote a subscript
variable, c and k denote non-negative integers, and X denote an Indirect
indexing vector(refer to section 4.2.2.2.) Subscript expressions may be
classified as follows:

1) I,
2) 1-1,
3) I-k, where k-l,
4) none of the other types,
5) X(z)
6) X(I-c)-k, where c+k-l,
7) X(I-c)-k, where c+k>l.

The range of a global subscript variable in an assertion may be
declared in a subscript declaration statement. If not declared, the
range is derived from an array dimension in which the subscript variable
has been used in a type 1, 2, or 3 subscript expression.

Exmle:
1) I IS SUBSCRIPT (10)

B(I) - AM()

A global subscript I is declared in the subscript declaration
statement and the range of the value of I is from one to ten. In the
assertion, the global subscript I will assume the integer values in
the range declared in the subscript declaration statent.

2) IC(SUBI) - I suB1-1 THEM I
ELSE SU3I * FACT(SUBI-l) ;

-15-

The range of the local subscript SUBI will be the same as that
of the first dimension of array FACT because the subscript SUB1
occurred in the term FACT(SUB1) is in a form of type 1 subscript
expression.

'rhe use of subscript variables allows us to define all the elements
of an array in one assertion. In the second example above, the whole
vector FACT is defined by the same assertion.

For multi-dimensional arrays, subscripting array variables may
Sbecome tedious. We have adopted the following convention to allow users

to omit subscripts in array references. When all the array references
in an assertion have the same leftmost subscript expression, which is a
type 1 subscript and when the subscript is not otherwise referred to in
the assertion, then the subscript can be omitted from the assertion
systematically. For example, the following three assertions are
equivalent.

al: A(I,J,K) - 2 * B(I,J,K) + C(I,J)
a2: A(J,K) - 2 * B(J,K) + C(J)
a3i A(K) - 2 * B(K) + C

2.4 CONTROL VARIABLES

Sometimes it is necessary to refer to attributes of the data, such
as the number of repetitions, the length, or the key for accessing a
record in an index sequential file. In order to allow reference to such
attributes, a number of control variables are included in the MODEL
language. Since the control variables are always related to some
variable, they have a form of a qualified variable, with the name of the
variable as the suffix and one of several reserved keywords as the
prefix. In the following we will assume that X is a variable name
declared in some data description statement. The control variables
which can be formed from X are discussed below.

If X is a repeating member of some data structure, the user can
specify the range by defining the value of a control variable called
SIZE.X. It should be noted that X may be a multi-dimensional array.
SIZE.X defines only the range of its rightmost dimension. The ranges of
the other dimensions have to be defined separately.

SIZE.X is a variable of integer type. Its value is used to specify
the number of repetitions of the rightmost dimension of array X. If
X(II,12,...,In) is an n dimensional array where ZI occurs on the most
significant dimension and In on the least significant dimension, then
the control variable SIZE.X(I,12,...,rk) should be a k dimensional
array with 0o-ken. The first dimension of SIZE.X has the same range as
the first dimension of array X, the second dimension has the same range
as the second dimension of array X, and so on. The value of SIZE.X
cannot be a function of any subscript 1i with ktic-n. For every n-i
tuple (1f,12,...,In-i) which corresponds to a possible combination of

- 16 -

r7
the leftmost n-I subscripts for array X, the number of elements of array
X with this tuple as their leftmost n-i subscripts is specified by the
array element SIZE.X(Il,I2,...,Ik).

Examples

A IS GROUP (B(3))
B IS GROUP (C(*))
C IS FELD;
SIZE.C(l) = 4 ;
SIZE.C(2) - 2 ;
SrZE.C(3) - 3 ;

SIZE.C C

I 4 I I C(l,l) I C(1,2) I C(1,3) I C(1,4)

121 IC(2,1) C(2,2)I

I 3 I I C(3,1) I C(3,2) I C(3,3) I

In the example above, array C is two dimensional. There are three
instances of B in data group A and each instance of B contains a number
of elements of array C. Correspondingly the range of the first
dimension of array C is a constant three and the range of the second
dimension which may depend on the subscript value of the first dimension
is specified in vector SIZE.C. SIZE.C(1) equals to four implies that
there are four elements of array C in the first instance of B, the value
of SIZE.C(2) specifies the number of elements of array C in the second
instance of B, and so on.

END.X

If X is a repeating member of a data structure, END.X can be used
to specify the range of the rightmost dimension of array X as
alternative to the use of SIZE.X.

END.X is a boolean array. If X(Ii,12,...,In) is an n dimensional
array, then the associated control array END.X(Il,12,...,In) is an n
dimensional array, too. The range of array dimensions of END.X are the
same as the corresponding array dimensions of X. The value of END.X
determines the range of the rightmost dimension of array X in the
following way. For every n-i tuple (II12,...,In-l) which is a possible
combination of the leftmost n-i subscripts of array X, there exists a
sequence of elements in END.X array with the same left n-i subscript
values, i.e. (END.X(Il,...,In-l,In) l<-In). If END.X(Il,...,In-l,m)
is a boolean true and all the elements of (END.x(II In-l,In)1
it-lncm) are false, then there are exactly m elements in array X with

(I In-l) as their leftmost n-l subscripts. The values in MDD.X may
depend on the values in array X, i.e. the number of repetition may
depend on the data in X.

- 17 -

Example:

For the same array C mentioned above, we may use a two dimensional
control array END.C to specify the range of the second dimension of
array C as follows.

A IS GUP (B(3)) j

B IS G(uP ((*)) p
C IS FIELD;
END.C(SUB1,SUB2) - IF SUB1l- THEN (SUB2-4)

ELSE IF SUBI-2 THEN (SUB2-2)
ELSE IF SUBI-3 THEN (SUB2-3) ;

c

I C(l,l) I C(1,2) I C(1,3) I C(1,4) I

I C(2,1) I C(2,2) I

I C(3,1) I C(3,2) I C(3,3) I

END.C

I F I F I F I T I

I F I T I

I F Ft T I

In the first row of END.C the first boolean true comes in the
fourth element, therefore, the fourth element is the last element in the
first row of array C. Similarly, the second element of the second row
of END.C is true implies that there are only two elements in the second
row of array C.

Example:

We will show how the END control variable can be used to specify a
varying number of repetitions by finding the greatest comon divisor of
two positive integers N and N. Euclid's algorithm is used here.

MODULE: TEST,
SOURCE: IN
TARET: OUT

IN IS FILE (IHR)
IHR IS REC(NN)

OUT 1S FILE (OUTR) p
OM1! IS REC(GsCD)

O- W8 -

Wn Is GOUP (WKG(*))
WKG IS GROUP (WKIK,W1C2)

(M,N,GCD,WK,WK2) IS FIELD NMK(4)

WK.(sBul) - IF SUB3-i THEN N
ELSE IF WKl(SUBl-I)>WK2(SUBl-l) THEN

WKl(sUB-i)-WK2(SUBl-f-)
ELSE WK2(SUCI-l)

WK2(S B1l) - IF SUB1-i THEN N
ELSE IF WKl(SUB-l) WK2(SU-i) THEN

WK2(SU8-i)
ELSE Wgl(SU8-1) ;

END.WKG(SUal) - WKI(SUBl)-WK2(SUBl)

IF END.WKG(SUBl) THEN GCD - WKI(SU6l)

POINTER. X

If X is a record of a keyed input file F, the instances of the
record X can be selected and ordered according to the value of a control
variable POINTER.X. The control variable POINTER.X has the same number
of dimensions and the same shape as the array X. For every value in the
control variable POINTER.X, a record instance in the file F with that
key value will be presented in the corresponding element of array X. In
order to use POINTER control variable for selecting and ordering the
records in a keyed file, one of the field in records should be declared
as a key in the file declaration statement. The content of the POINTER
control variable is usi as the key to access the corresponding record
from the keyed file.

A keyed file may either have sequential or index sequential
organization. If the file is index sequential, the records stored in
the file may be in any order. However, if the file is actually a
sequential file, then the records have to be sorted in an ascending
order according to the key field and the keys used to access the records
should also be sorted in the same order. This is an implementation
restriction. Without this restriction we can not read all the records
we want from that file in one pass.

When a keyed file is declared as a source and a target file, the
target file will be an updated version of the source file. Effectively
only the records being selected may be modified. For the rest of the
file they are kept intact in the target file. This mechanism makes the
update of sequential or index sequential file much easier to specify.
Since a key value may occur more than once in the POINTER array, the
corresponding (one) record will be accessed, possibly updated, and
written out several times. In order to make sure every update to the
same record is effective, the updates have to be done sequentially. We
can envisage that a new version of the keyed file is created after one
record is updated and every update is done on the most recent version of
the file.

Examples

- 19 -

, . 4

In the following MODEL specification a source file INVER is
declared as a keyed file. STOCKS in the record rNVREC is the key field
of INVEN file. Since the control variable POINTER.INVREC is equal to
the field STK in file TRAM, the INVREC records will be ordered according
to the values in the STK field.

MDDULE s MINSALE ;
SOURCE: TRAN, INVER
TR IS FILE (SALEREC(*))

SALEREC IS RECORD (CUST, STK, QUANTITY) ;
CUSTS IS FIELD(CHAR(5))
STK IS FIELD(CuhAR())
QUANTITY IS FIELD(CHW3))

INVER IS FILE (INVREC(*))
KEY STOCK$
ORG ISAM ;

INVREC IS RECORD(STOCKS, SALPRXCE,QOH)
STOCKS IS FIELD(CHAR(9)) ;
SALPRICE IS FIELD(NUNERIC(s))
QOH IS FIELD(NUERIC(5))

POINTER. INVREC - TRANSTK

FOUND. X

If X is a record in a keyed file, then it is accessed through the
value of a POINTER control variable. It may happen that the key value
used to access the record does not match with any record. The accessing
would fail. The user may test the value in a control variable called
FOUND.X to find out whether a record with some specific key exists or
not. This informaton may be used to decide whether a new record should
be added into the file or an old record should be updated. The control
variable FOUND.X has the same shape as array X and POINTER.X. Its data
type is boolean.

LEN.X

If X is a field in some record and its data type is variable length
character string, then the actual length of X is specified by the
control variable LEN.X which is used to disassemble the input or output
records. Corresponding to every element of array X, there is an element

*in LEN.X. The values in the array LEN.X are integers. We can use any
integer type expression to define LEN.X. The only restriction is that
the content of LEN.X should not depend upon any data physically
positioned in a record after the data field X.

NEXT.X

If X is a field in an input sequential file, the control variable
NEXT.X can be used to denote the same field in the next physical record
of the file. Although the next record usually means the record with a
subscript value one larger than the current record, it may not be true
when the current record is the last record in sow group. The problem

- 20 -

is causd by the fact that the user is dealing with structured data but
the real data in the external file is in a linear form. Sometimes the
information used to transform a sequenc of records into a structure

! form can only be conveniently expresed in the way that the records are

physically contiguous. For example, we may want to compare the value of
a key field in two adjacent records to determine whether a record is the
last record in a group or not. The fact that the current record and the
next record may or may not be in the same group causes trouble in
referencing the next record.

Example:

Suppose the records in a transaction file contain a customer number
and some relevant information and the records are sorted according to
the value of the customer number field. We may use the following
specification to describe the data structure.

TRRNSACTION IS PILE (CUSTOHE(')
CUSTOMR IS GRDUP (TRANS..REC(*))

TRRNSREC IS CO4RD (CUSTOKLfO, INFORNTION)
CUSTOERI-NO IS FIELD (PIC'99999999')

I IS SUBSCRIPT ;
J IS SUBSCRIPT ;
END. TRANSREC(1, J)-

CUSTONERJIO(1, J)^-NEXT. CUSTOVER.N(I, J)

The term NEXT.CUSTOMER_NO(I,J) in the last assertion can not be
replaced by CUSTOCELNO(I,J+l) because there may not be a record with
this pair of subscript values. The restriction in using the control
variable NEXT.X is that the position of X field in a record should be
fixed, i.e. the fields to the left of the field X can not be variable
length strings or repeating with a variable number of times. Otherwise,
the field X in the next record may not be located correctly.

SUBSET.X

If X is a record in an output file, then the control variable
SUBSET.X can be used to selectively omit some records from an output
file. The SUBSET.X control variable is a boolean array of the same
shape as the array X- When an element in the SUBSET.X has a value of
boolean true, the corresponding record X will be put into the output
file. On the other hand, if the element has a value of boolean false,
the corresponding record will not be put into the output file. It
should be noted that the use of SUBSET control variable does not affect
any other computations. Only a subset of records X may be omitted from
the output file.

21

CHAPTER 3

SYNTAX ANALYSIS PROGRAM

The first phase of the MODEL processor analyzes the syntax and
other local semantics of individual statements. Advanced
state-of-the-art syntax analysis techniques are used here which have
proved to be invaluable. Specifically, the capability to generate the
parser automatically has enabled rapid development changes. In addition
to checking the MDDEL statements for syntactic and some semantic errors,
this phase also stores the statents in an internal associative form

-Ifor later processing.

3.1 UHFI, SAPG, AND THE SAP

3 .1.1 SPECIFICATION OF MODEL USING RUN AND THE SAPG

The syntax Analysis Program (SAP) for the MDEL statements is
generated automatically by a Syntax Analysis Program Generator (SIPG).
As shown in Pigure 3.1, the SAPG produces the Syntax Analysis Program
(SAP) for analyzing MODEL statements, based on a specification of the
MODEL language expressed in the UMF/VSC (extended Backus Normal Form
With Subroutine Calls) meta language.

4

22

- 22 -

'SC
of

MODEL

Figure 3.1 Block Diagram of SAPG and SAP

The EBWF/WSC includes the traditional concepts of BNF. BNW uses
sequences of characters enclosed in angle-brackets <) called
non-terminals to give names to grammatical units, for which
substitutions may be made. It also uses sequences of characters not
enclosed in brackets which are in the object language (in this case
MODEL). BUF consists of a series of production rules or substitution
rules of the form "A: :-B" where "A" is a single non-terminal symbol and
"B" is one or more alternative sequences of terminal or non-terminal
symbols that can be substituted for A. The alternatives are separated
by the meta-symbol "I". To facilitate language description, BNF was
extended to EBHP with two more well-known meta-symbols: []
representing optionality and (]* representing zero or more repetitions.

The specification of MODEL that is input to the SAPG consists not
only of the syntax specification of MODEL, but also of subroutine names
embedded within the EBNF; therefore the name "EBN? With Subroutine
Calls" (EUHF/WSC). The SAPG provides a capability to branch to these
subroutines upon successful recognition of a syntactic unit. Thus, they
can complete the SAP to enable it to check some of the statement
semantics, to encode, to produce error messages, and to store the MODKL
statements for later retrieval. The invocations of these subroutines

themselves are written manually. The definition of the MODEL language
in EBNF/WSC appears in Figure 3.2. The subroutines to be invoked are
indicated between slaches (/.../). Note that subroutine calls are made
after the successful recognition of syntactic units up to that point.

-23-

The SAP generated by the SAPG according to the UHi/SC is
supplemnted and linked with the routines. The SAP accepts statements
in MOL and checks them for syntactic correctness, and local semantics.
It produces a listing of the statements, syntax diagnostics, an encoded
stored version of the MODEL statements, syntax tr e for the assertions
and a cross-reference report.

4

* ".1-2

cNODU._SPWIPXCATIONt:-(cNDEIL_.30Y.STMTS)- /CLRERRV/J
/STMJL/ tMODEk.-SP11CIVIATIOU,

,cINOEZL D0DT.SS: s- /EC 80)/

MODUE (50CJULENFSTW>P

II TAkGT TAGET_.FXZSST1I
1 0 -ENDS0 /EDrNP/
I cDCILDESCRIPfIOM.%
I 43WcK..DEGIN),

cBWx3LDM

I/ASSINrT/ cASSETIONS> /ST]RHS/
DCL_.DESCRIPTIONb a 1 /INTDCV /W1(YMl /NDIINIT/ /SVNDV/

-cDATA_.SPEC j
* (,/E(109)/ *INTEGER) /CRADCL/

* /INThVAR/ /MDIINIT/ /SVHDW
cDATA_.SPEC> /STDCL/ <ENDCHR).

c bATV..SPEC) 3am DCLXMA)- [(<OCCSPEC), CJ < IS),3
<ATTR_.SPEC) /SVDCW4

4M'TR..SPEC)- as (ILE) /SVV/ /SVFUOC/ <XLEDESC2,
STORAGE.DESC3, /STDEV/
c RECDRD)- /SVR

IPIELD-SMf), /STDVW/ /SVD/
I (-GRDCJP~] /SVG/

4AC3BEGIN2. a aO3W /BIJCINIT/ C <NAME> /SVLBW I /E(2)/
C c BL0CSPEC 3 * /3 J37A] <ENDCHR)

,(BLOCLSPEC), aa-cSOLWTION>) IcITERATIOMU) I cREL...ERlkRR
cSOWUTION.a% - SOLUTIONI METHOD C <IS> I /E(62)/

* (bIODS)- /SVHETH/ C , I
cMETHODS> aa NEW~TON I GAXUSS_SEIDEL I G-S IJACBI
crTERATION), :t C IM~AMU~K)-] (ITER) C (IS) /E4)

<NUMBER), /SVITEPV' C ,3

I cITER> a,- TER IITERATION I ITERATIONS
REL...ERR it- C RELATIVE] cEMR> C (IlS),] /E(5)/

(NUM4BER) /SVERR/ C , I
(ER) a ERR I ERROR
cBWC3LED) END), /SIJEND/ C <NMNE> /CDCL/] -DIDCHAR>
(DID) sa /ENDID/
(ASSErWIONS::-/E(14)/,cOtIDITIONAL> I

/SVASSP, /INTMWVP (MVAR)% /STNVAP./ /SVCHI/

1 (IS),/svNP/] cDDI-0R.RHs>
cONDITIONAL. a -IFP /SVAAS1/ /SVOP1/ /SETBIT/ /E(18)/

(DBOOLEANCPREZSSION)% /SVOCP1/ /E(38)/
THEN /SVNOP/ cSDVPZASSERTIOff., /SVNCM/
(ELSE /SVNOP/ <ASSERTION> /SVNOCCMP/J /STRLL/

4cASSER ION~aa- /E(14)/ (CONDITIONAL)- I cSrMPLEASERTIONt.

Figure 3.2 Definition of MODEL language in EBNF/VSC

-25-

4DDLOL.RHS .: -/IW1'OODv 4DTJDESC-SIWC) /VREETHP/
I/1(33)/ cZIl'ORS) 4ASSERTION_BRhNCH)

ASS1ZTI0_BRANCH), t : cDW-MEXRESSIOK)

I c0OLLE-W1W.SIz0K)/SVHX3WoA/ /STALL/
CDFEXRESSION),::a- /InTUB/ (cVALL.LIST)) /FREESUB/
4V IUELIST2 a a- (/CRSUB/ /DECPP/ VAILUX-aZST2.

C, cVAIC--LIST),]*) /INCPP/
I cSIchl, /SVOPP/J 4HUISER /STMW /STRSS/

4 INIORS ,tis/INOASS/
4SILE..ASSERIIOtl: sa- /SVABAE1/ /INMAD, d(KPAR. /STWVM

/SVCMP1/ /E(23)/ - /SVVXOP/
49COLEALR1PRSSI~m> /SVNXCEP/ /STALL/

4SUBJAR.IABLE: a- /SETSUBV/ <VAR) /SVCW1/

IDOOLEAN-M.EPRESSIOU> /SVMXOAP/ (p /SVNXOP1
cBOOLRNEPRESSOI/SVNXCIMP/] *

/]1(24)/)] /STALL/
,cBOOLZMEXPFXRSSI0fb: a /E(92)/ /SVBEXP/ cCMND_EXP>

I BOOLEAN-TER14 /SVOEPl/
c OR. /SVNXOP/ cBOOLERU_TEK

/Svtacop/]I * /STALW.
(cCNP-EXP)t:.I /SVCOMD/ /E(3)/ DOO0LEAN_EXPRESSIOtN

OSVaHPn /EO7)/ TEN REC/P
4DOLEALT~4: a - /1(83)/ ON /SVDT1/ /E(12)/N LSEC~

L/SVWOP/ <DOENOL3PENAIOR /SVNXCM/J
/STALL/

DOO0LEANTEIRta::- /(8)/ /SVB/ oONCEANATON) /svCMpl/

C(RELATICEI, /SVNXOP/ cCOUCATENILTION>
ISVNXOEP/I* /STRWL

cRELATION).a - /RELREC/
cCOW2LTENATIOK).a:- /E(84)/ /SVCOKI cAPZTEHEXP> /SVOMl/

[cCONCR!T> /SVNXDP/ cAR3:TBEXP-

4COCA) s- /AT=//SVNXCM/]* /STALL/

<AIEEX>: /E(81)/ /SVAE/ (cSIGN, /SVOP1/]
4TERKM /SVCMWl/ (cOPS 2 /SVNXCDP/ cTERMv

/SVNXO(P/] * /TL
cTERK): a- /E(87)/ /S'TPWJ cFACTOR. /SV0CP1/

[<MOPS) /SVNOP/ FcIMR> /SV4XOAP/ * /STAX4/
<FA=TR::- /E(95)/ /SVFAC/ C /SV0P1/] CPRng=>Y /SVOAP1/

(CEXPON /SVWWP/ CPRNHAJM> /SVsNXOAP/]J* /STALL/

Figure 3.2 Definition of MODEL language in EBNF/WSC

-26-

ePRDWRT: s:t /2(86)/ /SVPRIM/ tIS..RIM.b /SVOAPl/ /STALL/
* ~IS..PREK) - (OOLEANWMRESSIOKN, /Z(24)/)

I 44UIUER, /STMKDV I cSTRINGFORK)
I cFtWCTIOChMCA. I sSUB..YARrABLE.

STRINGP0Db,: - ' /SETSTRN/ (4STRING) /SVSTDIG/] INE(26)/
'/ADLMV/ [B /ST13rI/ /E(l)/ 'BSUFXJ,

/SThuW
FPUNCTION-CALLMa- cFUNCTIOCN3=E% /STIUN/

/SETFUMC/ C(/SVNMMP/ DOOZLEXPRESSIOK3-

F /SVNXOAP/ (/SVHXOP/ cBOOLZM-_EWRESSION).
/SJMO/ I*) /STr./

CFEXACTIOff_.NE),::a- /FMCHECK/
a RR:- C SUB-VRXABLEL /SVIIvAP

C, cStM.VARXMBLE3, /SVNVAP./3)
I cStUVARIALE). /SVNVAP./

,cA >- /SETVAR/ /INITQWM /E(69)/ <NAWIE, /ADLaEX/ /HKQNK/
C. /ADLEX/ /2(68)/ -(HAM>E /ADLVL/ /WIKQNN/J

/STILCON/
DaI.NVAR> a:< VAR~o /SVKVAP./ C, (VAR> /SVIIVAR/ 3

<VARo /SVNVAR/
<BSUIFX>::t- /BITSTR/
<QNA4E>::- /INITQNIV /E(69)/ cNAME> /MKQNK/

(*/1(68)/ NANE3- /UCQNII
<STRING>::a- (STRIN_CONST)
ops>:.-- /OPREC/

.NGPS2 la /MOPREC/
tTEST> t:- /TESTBIT/
cDULE_NAELSTNT!):: /E(63)/: /E(64)/ (MA14E) /STMIDD/

cEDCAR3.
4SOUCEFILESSTW1r)a::- [<FILEjCEflRD> /1(75)/ /INMTFV a

,S0URC&FILELIST> /STSRC/ <ENDCHAR.a
<FIZEYWORD~t: a FILES IFIL19
S0UCEjILELrSTa:tt /E(76)/ -4NA4E> /SVSIK/

C, /E(76)/ 4NWEE /SVSRC/J*
cTARGETFILESSTNTfl:a a ('FILEJCEYNGRD] /E(77)1 /NI'W

<TAG1TILELIST> /STTAP./ cEDCHARR3
4ThRGETFILELISTa: a- /E(78)/ -MINE /SVTRI/

C, /E(79)/ dEN~A4 /SVTAR 3
<DTRDESC_STI1!a a- cDA_&DESCRIPTION> sENDCHARR

cDRTIL.DESCRIPTIOU>::-

cPLESTNT) /STFILE/

II j (RtUP-flqj /STGRP/

I -CFIEw-STMe1! ,STFW,'
~II c5038 V~r /STSUBST/r cSr3BSTWIT> s smSUBSCRIPM/NDINIT/ /SVNM/ [(OCCSPEC>)

cS (SCRIPT> s - SUB I SUBSCRIPT SUBSCRIPTS
4rILZ>aam FILE I REPORT' I FILES IREPORTS

Figure 3.*2 Definition of MODEL language in EBNFP/WSC

K 27-

IR~cODS1P~:: RECRD, /NDEINIY/ M(cITDLLISY, D)]

4 CramORD3. aI:- REC I RICORD I RECORDS
< YMILIST?:t:i- /E(52)/ ITE~o C(, 1 ITEb]'

or=),: t-dmsoE /SvwzI E . dNINE /SVHI/]*
V(4OCCSPEC)J

4OCCSPZCsss- STZR> /SVSTAR/ I c'nk=>c/SVNNWC/ (4cXC J
4STAR>32- /STARREC/
4NINOCC>s :dINlEGER%

cGRU-SHT)::- cGROUP /hDENIT/ M(-(ITMLLIST. 1
<GROUP, zas- GRP I GROUIP I GROUIPS

4FIELD..M'R) ::- [(] tTYPE /SVFDTP2/(4LEiG....SPWC,]

LIG...SPEC :: C<LNEL-.SPWC~l [,] (cO.,SPEC2] D

cKrNLENGT%).: c (IMGER /SVNNW/
4LINSPEC).::- LINE /E(53)/ /E(54)/ /E(55)/

(<INTEGER), /SVLI:NE/)
.cCOk.SPEC>: : COL /E(90)/ /E(91)/ /E(92)/

(rNTEGER) /SVCOL/)
cTYPE>: t- /E(47)/ <PIC..DESC> I <STRING_SPEC> I cNUKSPEC>

C <STRING) /SVPICST/ J*/STPIC/
4PICTPE~st- PIC I PICTURE
tSTRING-.SPEC>:: - cSTRING.TYPE> /SVSTRFP/

cSTRINGTYPE>::- CHAR I CHARACTER I BIT I NUIN I NUMNERIC
4INUttSPEC>: s cNEDLTYPE> /SVNUWI'P/ (<FIXFLT) /SVIWD/]
4NJILTYPE>::- BIN I BINARY I DEC 1 DECIIOL
tFflCFLTi i - FIX I FIE I FL I FLOAT I FIT~
<MAXLENGMH~s: - C:] 4INTEGER> /SVHMXILN/

I,/1(46)/ 4SINTGR> /SVSCA.E/
t INTEGERs, /SVOCFW/

<SINTGR)t: - - /E(50)/ <INTEGER> /NEGATE/ I 4INTEGER.
(NUHBER> ::- /SETNUK/ -crNINUH) /1(65)/ cRECHUM),
(REOIUN) S ,m /RlxIUN
4 INITNU4>: t- /INITNUIV
4SIGN is- + I -

Rcfa=:: 2 (R=cORD I cGRIW).
cM>Es : :-IMYI SEQUENCH
cCODE>: t :EBCDICI BDDI ASCII
cAMY :2- cNl=).j-crNTlEGER*
4 cNOTNCSa.:: -7l19
<DwsNBITY- 200155610011600162S0

cPARITYi- i OMDIKEVEN

Figure 3.*2 Definition of MODEL language in EBNF/WSC

-26

tT'PEDS):s 2314123111333012305 1 3330-1
,(0R23:s:ORG10RGhI1ATI0W
tOR_1TYPE): :- /E(7)/ISANI SEQUJDIIAL ISANI ZNDEXE...SEQUENTIAL
,cEDCaIR-: :- /E(74)/ <EDDCHR)- /sIWZ'INc/
EM-D..OHR2, :- /SVENDC/

4STRINGSOHST3: :-/CHARSTR/
.(NAHEz3 : -/NANEREC/
< INTEGER: t s rNTPC/
<I8).18 IS I- I ARE
41FILESTNT) ss- cFILE> /SVFLNH/ /N4EMINIT/ <SOIL.DESC>

cFILE....ESCio <SVRAGEDESC) /STDEV/
'cS0ICDESCt: -(cITEDQLIST3I

1 4RECG). CHUMN) (4IS))] c(] <ITm). ()]
cO0W.FILEWIM1':ov: cFILZ) (HNE] EcIs~] /E(56)/ /HEKINIT/

/I.NTHVAR/
<DCI4JIA), /SVFLNN/
cRECGo (MANE) (15S)] C(] <ITEM) C)]
cFILEDESC). /STFILE/
tSTORAGML.DESC) /STDEV/ <ENDCHAR.%

FPILEDESC3::- (STORAGE [NIAME] (CIs.] /z(44)/ -NANE>

(KEY) (NAME) (1IS*] /E(45)/ cNAME> /SVKEY/J
(CtRG> (1S,] <ORG..TYPE> /8V0W33/]

tSTORAGEDESC.% si- [DEVICE (C ISl -)cDEVICE2,] /SVDEV/
(RECORD tIC 57)/](FPORAT [<IS>] J CFNT) /SVRECF/
c8BK REC_.VOL>
[,cTAPE-DESCi] [,cDISK...DESC]

(DHARWARE] (SOF'IWE]I
(tDEVICE) t: -/E(61)/TAPE I DISK/SETDEVB/

ICARD /SKTDEx/ IPRINE~ /SETDEVP/
IPUN=H /SETDEYU/ I TERMINAL /SVEET/

4REC_FMT) :: - /E(69)/ FIXED I VXRIABLE I VAIL.SPANNED1 EWUDEFINED
4BLKREHCVOL> : t -

((MAX] /E(70)/ /E(71)/ BLOCEIZE (dis)-l
4cIWI'EGER.% /SVBLK/ jK~ ((AX/E(59)/J R4ECORDSIZE [41S>] /E(72)/

iL [VOLUME (NANE] (4152] /E(60)/ cNRME)
/SWOIV [,/E(60)/,NANEI* I

<TAPE...DESC> z:- TRACCS> [<IS>] /E(66)/,NOTRKS/SVTRK2/]
(PARITY [< IS.-] /E(66)/ cPARrTY.-/SVPAR2/]
(DENSITY (clS]l /E(66)/ (DENSIT Y) /SVDEN2/J
C (TAPE) LABEL (I1S)] 4L&BEL-TYPE>/SVLAB2/]

[START (FILE] (<IS)] /E(66)/ -cINTEGER>

/SVSTFPL2/1
((CHAR] CODE ((IS)) <CODE> /SVCC/

-cTRA a a - NO..TRKS I TRACKS
(IABZL_.TYPEi) a a- /E(58)/ IMLSTD IANSI-STD INONE IBYPASS

Figure 3.2 Definition of MODEL language in EBNP/WSC

-29-

cDISXDESC- i:- (UNIT [<IS,] /E(9)/ <TYPEDSK, /SVUNIT2/]
[cCYLINDERS,/SvuCyL/ <IS] /E(66)/

<INTEGER> /SVQTY2/]
<CYLINDERS, ::- NO_CYLS I CYLINDERS
(HARDw E E):- CcOmPUTER] MODEL (CS,] <ANY>
<SOFThRE)Z: COPERATING] SYSTEM (1i] <ANY]

Figure 3.2 Definition of MODEL language in EBNF/WSC

3. 1 12 HOW THE SAPG PRODUCES THE SAP

The SAPG is a parser generator. It accepts a specification in the

language EBNF/WSC and produces a parser program (SAP). It performs this
in three passes over the set of productions.

In pass 1, each production is scanned, and its components are
encoded into a set of tables. Non-terminal symbols appearing on the
left-hand-side of a production (new production names) are put into a
symbol table (LHS-NT-SYN-TAB), while non-terminals appearing on the
right-hand-side of a production are put into another symbol table
(RHS-NT-SYN-TAB). Terminal symbols in a production are put into a
terminal symbol table (TERM-SYM-TAB). Subroutine calls are put into yet
another table (SUB-TAB).

In pass 2, the symbolic references in RHS-NT-SYM-TAB (i.e.
non-terminals on the right-hand-side of the original production) are
resolved. Pass 2 checks that each non-terminal symbol in RHS-NT-SYM-TAB
is defined, and links it to the corresponding entry in LHS-NT-SYM-TAB.
Undefined non-terminals as well as circularly-defined non-terminals can
be detected in these table searches.

Pass 3 of the SAPG is the code-generation phase that produces the
SAP in PL/I. It is only entered if no errors were encountered in the
previous phases. For each EBNF/WSC production, a PL/I procedure is
generated. Each one returns a bit: 1 if the recognition was
successful; 0 if it was unsuccessful. The exclusive nature of EBNF
production rules and alternatives is effected by generating nested PL/I
IF-THEN-ELSE statements. Repetition zero or more times is effected by
generating a GO TO to the statement testing for recognition. Subroutine
names embedded in the EBNF/WSC get a CALL generated for them in place.
Calls to other subroutines not explicit in the EBNF/WSC are also
generated. These include "housekeeping" subroutines of the SAP and
calls to LEX, a subroutine to scan and return the next token in the
object language.

To illustrate the code that the SAPG generates, consider the
following representative production rule in the EBNF/WSC and the PL/I
code that corresponds:

cFIED_STMTz :- <FIEWLD /SVFLD/ rFIELDATTR% /STFW/
The PVI code that is generated for it by the third pass of the SAPG
would be the following:

-30-

PIELD-.STWIT PROCEDU1RE RETW5(BIT(1));
CALL MRaK;
IF FIELD() THEN DO;
IF ERRORSW THEN DO; CALL SSUCCESj RETURN(1'B); END; ELSE;
CALL SVFWL;
IF FIELDATTR() THEN DO;
IF ERRORSW THEN DO; CALL SSUCCES; RETURN(''B); END; ELSE;
CALL S1FW;
CALL SSUCCES; RETURN('l'B);
END; ELSE DO; CALL SSUCCES; RETURN('1'); END;
END; ELSE DO; CALL $FAIL; PRH('O'B); END;
END FIELDSTHT;

The above code generated by the SAPG would become one procedure in
the SAP. Note that the name that the language definer uses in the
production rule are preserved in the generated SAP code. The
subroutines beginning with dollar signs (3) are "housekeeping" routines
that are internal to the mechanisms of SAPG-generated code.

3.2 SUPPORTING SUBROUTINES FOR EBNF OF MODEL

A refined system flowchart of the SAPG and SAP showing the types of
supporting routines appears in Figure 3.3.

31

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - S -€ "- age .- -:" --v- -1

MIX,

L _I- II I

routtn Sbouie

seveal= typesca :=W

Ar tolyzer SW a

(2) mt tn eais ?hekintruties

I

if icat..~ C-3 3Yr-:a.C dRp

Fig. 3.3 Moare Detailed View Of SAPG and SAP With
Supporting Subroutines

The manually-written syntactical supporting routines are of one of
several types:

(1) a lexical analyzer which returns tokens of syntactic units to
the SAP for analysis;

(2) statement semantics checking routines;

-32-

(3) error message handling routines;
(4) encoding routines to compact information for furthaer efficient

processing; and
(5) statemnt storage routines.

The cross-reference report produced during this phase is generated
by a manually-written program (XRF) and is described in section 3.4.

A discussion on how to decide where to insert subroutines as well
as a tabular summary of all routines used appears in section 3.2.

3.2.1 THE LEXICAL ANALYZER

The purpose of the lexical analyzer is to scan for syntactic units
or "tokens", using such delimiters as blanks and certain punctuation
marks, and to return tokens to the Syntax Analysis Program (SAP) for
syntactic checking. The automatically-generated SAP calls upon the
lexical analyzer (LEX) whenever it needs the next token. The lexical
analyzer is based on the finite state machine concept. Each state of
the machine corresponds to a condition in the lexical processing of a
character string. At each state, a character is read, an action is
taken based on the character read (such as concatenating the current
character to previous ones or returning the entire token to the SAP),
and the machine changes to a new state. The characte classes for the
MODEL language, for the purposes of lexical analysis, appear in Table
3.1. These classes divide the entire character set into categories such
as illegal characters, delimiters, "normal" characters, ... etc. The
state transition matrix for the MODEL language appears in Table 3.2.
The rows of the matrix represent the character classes of the previous
character, while the columns represent those of the current character.
The entries in the matrix indicate the action to be taken and the next
state. The action taken in each state is summarized in Table 3.3. The
actions involve such steps as concatenating of a character, ignoring a
character, detecting an illegal character, returning a complete token to
the SAP, ... etc., and setting a "next state".

3

- 33 -

class Character Set Explanation
0 A D ... Y Z_ # 0 Characters in nams
1 space Delimiter
2 0 1 2 ... 9 NLaral
3 •(+ , I:'" Delijeterx

.4
5 Delimeter in logical ,xp
6 I "OR symbol
7 * Multi. or comment in
S-"NOT- symbol

9 - minus symbol
10 / Division or comnt
11 Delimiter in logical exp
12 - Delimeter and logical exp
13 all others Illegal

Table 3.1 Character Classes for MDDEL Language

I
I

'.4

I3

- 34 -

Character 1 1 1
Class (next) 0 1.234567890123

(Current)
0 12122222222227
1 13151111111117
2 12121222222227
3 22222222222227
4 22122222222227
5 22222222222217
6 22222212222227
7 22222221222227

22222122222117
9 22222222222127
10 22222226222227
11 22222222222217
12 22222222222227
13 77777777777777

Table 3.2 State Transition Matrix for IDDEL Lexcal Analyzer

-35-

I
Action 1: Concatenate next character to current token
Action 2: End word with next character
Action 3: Skips blanks sequence
Action 4t Reserved (not used)
Action 5: Scan forward one character and save as tokenAction 6: Comment bracket; Scan to end of coimnent

Action 7: Illegal character(s); print error message

Table 3.3 Lexical Analysis Actions

3.2.2 STATEMENT SEMNTICS ANALYSIS

Some of the semantics of the specification statements can be
checked during the syntax analysis phase. Such routines can check that
a range or condition on a syntactic unit is locally correct. These
routines do not and cannot check the overall consistency, completeness,
or correctness of the logic of the MODEL specification, a task which is
performed by a later phase of the Processor. An example of a local
semantics checking routine is one which checks the range of a numeric
computation. For instance, if a group of data is said to occur n to m
times, a subroutine exists to check the condition 0 cm n m a C32768.
These manually-written routines are invoked automatically by the SAP by
virtue of their specification in the EBNF/WSC of the MODEL language for
the SAPG. The semantic checking routines are listed in Table 3.4.

Semantics Cheching Routines
NAE WHAT IT DOES
ASSWNIT Initializes number of sources/targets to

assertion
CATREC Recognize the operator ' I'
BITSTR Check that an alleged bit string contains

only the digits 0 and 1
CXIX Checks proper range for mininum and maximum
EXPREC Recognizes the operator '
pNCHEK Check that a candidate name is a recognized

function name
TNITQM Initializes number components to qualified

name
INITSFL Initializes source file list

SINITlYPL Initializes target file list

INTOASS Returns I if the current scanned statement
i an assertion and not a data description
statement

4 INTODT L Records that the statement scanned is a data
description statement

INTREC Recognizes integer
mDINIT Initializes number of members of record or

group

Table 3.4 Semantics Checking Routines

- 36 -

SSemantics Chechin9Rotie

I. E WH IRT PtWA DOES
mmK Concatenates qualified name components
HOPREC Recognizes a multiplication operation, i.e.

"*9 or o/0

NANEREC Name recognizer; checks not keywords
OPREC Recognizer for the operators 1+, -
ORREC Recognizes the alternation operation '
REImU Recognizes and scans a number
RELREC Recognizes any of the relations:

41 31), ,n IMP -C IA Wo

SETBtT Used to set and reset a bit that indicate
whether the statement is an assertion or a
data description statement

STARREC Recognizes a '1* for indefinite repetition
SVASSR Saves the actual assertion itself during

the scanning of a statement
SVENDC Recognizes a ';' as an end of statement

character

Table 3.4 Semantics Checking Routines

3.2.3 ERROR MESSAGE STACKING ROUTINE

There is a subroutine which stacks error diagnostics to print out
upon recognition of a syntactically-incorrect user statement. Upon
reaching incorrect syntactic units, the automatically generated SAP does
not print its own messages, but expects the corresponding diagnostics to
be on an "error stack". Specifically, an error code has to be stacked
for each expected terminal symbol in the MODEL language in case the
token is missing or incorrect. If the expected token is found, the SAP
simply pope the corresponding error code and continues; if the expected
token is missing or incorrect, the SAP pops the corresponding error
code, prints the statement number, the unexpected token, and the
corresponding error message, scans for the end of the statement
delimiter (;), and continues. The routine that stacks such error codes
is called "E". Each syntax error message pinpoints the token that is
incorrect, missing, unexpected, or misspelled.

One product of the syntax analysis phase is the Error Diagnostics
Report containing the error messages. Each mesage gives the diagnostics
corresponding to the error code and provides the exact location of the
error so that it can be corrected and resubmitted by the user easily.
If no syntax errors are found during the syntax analysis phase, a
message is sent that "NO ERROR OR WARNINGS DETECTED", and the Processor
proceeds to the next phase. But if error diagnostics were produced, a
flag is set to disable continuation of analysis and design beyond the
syntax checking phase.

The error messages are listed in Table 3.5.

4 -37-

XRROR MESSAGES:1*CODE ERRORS
1 A bit string contains character other than 0 or 1
2 Kissing ':' after the word BLCX
3 Badly formed boolean expresion after IF in statement
4 Missing or invalid numeric constant in iterative

count spec
5 Kissing or invalid numeric constant in relative

error spec
7 Organization type missing or illegal in DISK

statement
9 Type disk missing or illegal in DISK statement

12 Kissing ELSE in comditional expression
14 Assertion missing after the keyword THEN
19 No boolean expression after the keyword IF
22 no expression after the keyword (
23 Keyword '-' is missing
24 Missing right parenthais
26 Missing string after quote
33 Error in recognition of a right hand side of an

assertion
38 Keyword THEN is missing
39 Record or group keyword expected
42 Record name missing or illegal in FILE or REPORT

statement

Table 3.5 ERPR MESSAGES

34

mnmB
CODE ERRORS

44 Medium name missing or illegal in FILE or RUORT
45 Keylame missing in FILE or REPORT statement
46 maximtm length missing or illegal in variable length

in FIEW statement
47 Invalid or missing field type in field/interim

statement
48 Missing or invalid length in field/interim statement
49 Kissing right parenthesis after field-type in

field/interim
50 -' sign is not succeded by an integer
51 Missing/invalid ma no. of occurrences of items.
52 Name missing or illegal in item list
53 Missing left parenthesis in line skiec
54 Missing integer in line spec
55 Missing right parenthesis in line spec
56 issing/invalid file name after keyword FILE
57 FOVna missing/misspelled after RECORD in storage

statement
58 Missing/invalid tape label
59 Keyword RECORDSIZE missing/misspelled after MaX
60 issing/invalid volume name (external or internal)
61 Missing/invalid device type
62 issing/invalid iterative solution method

Table 3.5 ERROR MESSAGES

4

-39-4

CO ERRRS
63 Colon missing after keyword MODULE
64 Name missing or illegal in MODULE statement
65 Error in assembly of a number constant
66 Tape spec. parameter missing or illegal
67 Error in a picture spec
68 Qualified name illegal

69 Record format missing or illegal
70 Keyword BACSIZE missing in record format spec
71 Blocksize value missing/illegal in record format

spec
72 Record size value aivsing/illegal in record format

Spec

74 Missing '1' at end of statement
75 Kissing 't' after keyword SOURcZ FILES
76 Name missing/illegal in source file list
77 ':1 missing after keyword TARE
78 Name missing/illegal in TARGET file list
79 Missing THEN in conditional expression
80 Unrecognizable statement
81 Badly fo d arithmatic expression
82 Badly formed boolean expression
83 Badl formed boolean term
84 Badly formed concatenation of expressions

Table 3.5 ERROR NESSAGES

-40-

CODE ERR4RS
05 Badly formed factor
06 Badly formed primary
87 Badly formed term
90 Missing left parenthesis in column spec
91 Missing integer in column spec
92 Missing right parenthesis in column spec

101 Length of picture spc. is too small or too big
102 Specified length is inappropriate for specified type

of data
104 Specified maximum length is inappropriate or too

small
105 The fraction point offset is outside of bounds

-1284p l27
106 Bad repetition specification
107 Illegal character in picture specification
108 Expecting a level number in a structured data

description statement

Table 3. 5 ERRR MESSAGES

3,2.4 ENCODING USER STATEMENTS

These supporting routines encode some of the MODEL specification
into an internal representation. Although all of the names provided by

the user specification are kept intact in internal form for use by the
object program, many of the descriptions and attributes are encoded for
more compact and efficient processing later. For example, the
description in a FIELD statement enters an internal table where the type
of field is encoded (0 for character, 1 for binary, 2 for numeric,

etc.), and the field length type is encoded (0 for fixed length, I for
variable length). One encoding routine is written for each statement
type. Each routine is invoked automatically after recognition of the
syntactic unit by the SAP. The invocation is automatically generated as
part of the SAP by the SAPG by virtue of its specification in the
EWNF/WSC. The internal format of the tables is given in the next
section in conjunction with the discussion of the internal associative
storage of the MODEL statements.

The encoding and saving routines are listed in Table 3.6.

-41-

Table 3.6 DICODING/SAVING ROUTINES

m WHAT IT DOES
nmom Initialize scanning a numeric constant

SETOKVM Set device flag in media description to
imply disk storage

SETDEVC Set device flag in media description to
imply that input is from cards

SETDEVP Set device flag in media description to
imply PRINTER

S E''EVT Set device flag in media description to
imply a terminal

SETDEVU Set device flag in media description to
imply a card punch

SETPUHC Initiate a node in the syntax tree to store
a function reference

SETHUM Set for assembling a constant number
SEITSTRN Initiate a node in the syntax tree to store

a string constant
SETSU1V Initiate a node in the syntax tree to store

a subscripted variable
SETVAR Initiate a node in the syntax tree to store

a variable name
STALL Stores a node in the syntax tree after all

its components have been defined

- 42 -

| - " i i I I III I I II

Table 3.6 M=CODING/SAVIMG ROUTINES
_____I____ _NG ROUTINES
NANE WHAT IT DOES
STBIT Sets the current string contained in the

, temporary node to be a bit string
STDEV Store device; Tape or Disk
STFJN Stores a node in the syntax tree which

contains a function name
STNU, Concludes the assembly of a constant number
STPIC Concludes the storing of a picture type

specification
STRCON Stores a node in the syntax tree which

contains a general constant
STRUS Stores an assertion in the associative

memory (an entry point in ASSINrT)
SVAASl Sets a node to contain a conditional

assertion
SVASAEI Sots to define a node containing a simple

assertion
SVBDXP Sets a node for storing a boolean expression
SVBFl Sets a node for storing a boolean factor
SVBLK Saves block size in disk/tape storage entry
SVBT1 Sets a node for storing a boolean term
SVCC Encodes chazacter code

"4I

I- 43 -
4

Table 3.6 ICODrNG/s&vING RCTIN.S
ENCODMI/S&VIN 0OTrZ3

* NUM NIET IT DOES
SVCOPl Save in a node the recently scanned

syntactical unit as the first descendant
SVCOL Saves column number in field storage entry
SVCON Sets a node for storing a concatenation of

expressions
SVCOND Sets a node for storing a conditional exp.
SVDEK2 Saves density for tape
SVDEV Set device name to storage name, and save

device: Tape or Disk
SYFAC Sets a node for storing a factor
SVFDTP2 Encodes field type, including NUN and DEC
SVPL Encodes field statement type a FLD
SVFLNK Save file name. Call SVVILE, set default

n ames for record storage, and reset device
bit (DEVBIT)

SVKEY Saves key field in file storage entry
SVLAB Encodes label type in tape statement

O-none, ImULsTD, 2-ANSISTD, 3-BYPASS
SVLAB2 Save label for tape
SVLINE Saves line number in field storage entry
SVHEN Saves member name in record/group storage

entry

4

: -44-

Table 3. 6 WCODING/SaVI"G ROUTNES
WmCODIM;/SAVIMG;] VLINES

NaE WMAT IT DOES
SVIWW Saves minimum field length in PW statement
SVNOC Saves minimum number of occurrences in

record or group storage entry
SVMD Marks the mods as PIXED or LOATING
SVNXFLW Saves maximum field length in NW statement
SVNCO0C Saves maximum number of occurrences in

record or group storage entry
SVNUqIP Marks the data type as a numeric data type

(BINARY or DECEWRL)
SVWXCHP Saves the next assembled syntactical unit

in a syntax node which is its ancestor
SVNX0P Saves the next delimiter associated with

the assembled syntactical unit or
separating it from its successor

SVOP1 Saves an initial delimiter associated with
phrase such as unary - or ' IF'

SVORG3 Saves organization for disk
SVPAR2 Saves parity for tape
SVPIC Denote the data as 'PICTURE'
SVPRIM Sets for assembling a phrase for a PRIMARY
SVPICST Saves the picture specification string
SVQTY2 Saves quantity for disk

- 45 -

Table 3.6 ENCODING/SAVING ROUTINES
ZNCODING/SAVING_ MTINES
N WHAT IT DOES
SVRCSZ Saves record size in tape/disk storage enrty
SVRECF Encodes record format on tape/disk storage;

O-FIXED, I-FIXED BLO, 2-VARIABLE
SVSCALE Saves the scale factor specified in the

precision specification of the data type
SVSRC Saves source file name in source storage

entry
SVSTAR Records and saves the repetition spec. '()'

in a file statement
SVSTYL2 Save start file# for tape
SVSTND Saves storage name in FILE storage entry
SVSTIRNG Transfer an assembled string constant from

the general buffer into a special temporary
storage. The final storage of the node will
be done by STRCON.

SVTAR Saves target file name in target storage
entry

SVTERM Initializes a node to store a phrase for a
TERM

SVTRK2 Saves number of Tracks for tape
SVUCL Save units as CYL for disk
SVVOL Saves volume name in disk/tape storage entry

3.2.5 STATEMENT STORAGE ROTINES

These routines collect the strings of names and other vital
information in the MODEL statements, and pass them to the STORE system,
which is a subsystem in itself to store the statements for later
processing. Such storage-invoking routines are called at the end of
scanning each MODEL statement, and are the ones that begin with the
letters "ST" (e.g. STFW, STREC, etc). The storage subsystem described
below (STORE), which is called by these routines, stores the MODEL
statements in a simulated associative memory that facilitates later
retrieval.

On analyzing the assertions (computational statements) a syntax or
derivation tree which represents the assertion is generated and stored.
This representation facilitates later analysis and scanning of the
assertion, as well as systematic transformation. The tree
representation is reconverted into text form in the code generationphase.

At the end of the syntax phase, we have the entire set of MODEL
statements stored in a convenient storage system for further analysis.
The storing subroutines which invoke the use of the STORE system act as
an interface between the automatically generated SAP and the storage
system presented below. The storage system is an extension to the
capabilities of the SAPG since it is general purpose in nature and is
independent of the nature of the language specified, and could be used
for processing other languages.

- 46-

The storing routines are listed in TPable 3.7.

.47

Table 3.7 STORING ROUTINES

to= "MT IT DOES
STIPILE Stores FILE statement
STFW Stores FIEW statement
STGOP Stores GROUP statement
STHMD Stores MODULE statement
STPUCH Stores PINCH statement
STREC Stores RECORD statement
STSW Stores SOURCE FILES statement
STTAR Stores TARGE FILES statement

3.2.6 NOUSEUZEP IM ROUTINES

Finally, there are a few "housekeeping" type subroutines which need
not be written by the language definer because they are provided by the
SAPG, but which need to be included in the EDZF/WSC.

The housekeeping routines are listed in Table 3.9

lA
;' 1

I-

-4.-
A- 4 -

Table 3. 8 HOUSEKEEPING ROTINES

NAMN WHIT IT DOES
ADLEX Adds a subpart of a floating point constant

to its full representation
CLRERRF Clears errors flag every statement to

indicate no syntax errors yet in next
statement

ENDIMP Executed upon end-of-file to print last line
and wrap-up

FREETMP Frees allocation of a temporary data
structure which was needlessly allocated

NEGATE Negates the value of a negative integer
constant to derive its real representation

STMIFL Scans for end of statement delimiters when
unrecognizable statement encountered

STTINC Increments the statement number; called at
end of each statement

3.2.7 IN INDEX TO SAP ROTINES

The subroutine names used in the specification of NODEL can be
classified into one of the following four types of subroutines:
encoding/saving routines, storing routines, semantics checking routines,
and housekeeping routines. Table 3.6, 3.7, and 3.9 provide an
alphabetical listing of the routines within each category. As for error
messages, the error code and their meanings are shown in Table 3.5.

3.3 THE STRING STORAGE AND RETRIEVAL SUBSYSTEK

3.3.1 INTROCTOPIO

The store routines that are referred to in the EBNF description of
MODEL, utilize a general-purpose mechanism for storing source language
strings. A similar mechanism is used later for retrieving these source
language strings. The following system, basically, consists of a
directory structure, described in section 3.3.2 and the format of
storage entries described in Section 3.3.3. There are also two main
procedures:
(1) STORE for storing source language string collected during syntax

analysis. STORE is described in Section 3.3.4.
(2) RETRIEVE for accessing previously stored source language strings,

based on a variety of "keys". RETRIEVE is described in Section
3.3.5.

Additionally a set of routines specified in EBN parses and stores
the assertions. Section 3.3.6 describes the format of stored
assertions. Section 3.3.7 describes the routines that store the parsed
assertions. These routines have also been referred to in the
description of saving and encoding routines in Section 3.2.4.

-49-

The STORE procedure accepts strings which are formed by the
subroutines called during syntas analysis. it stores the strings in
memory which we call "storage entries" while building "directory
entries" in a directory of certain names designated an keys. By
building a directory, the strings are stored "associatively" in the

*sense that statements can later be retrieved based on their content.
* This capability is crucial to "non-procedural" language processor since

the statements can be input in any order.

3.3.2 THE DIRECTORY AND STORAG STRUCTURE

The storage entries (the strings to be stored) consist of two
parts:
(1) the key names to be entered in the directory which include the names
the user provided in the NDDEL statements for naming data, assertions,
etc. these are the names by which we may want to retrieve information
later.
(2) auxiliary data from the source language strings including the
encoded information in table form. This information is not used as the
basis of retrievals.

Each storage entry will contain information from a given MODEL
statemnt. They will appear in memory in the order in which they are
processed.

The directory consists of an entry for each key name. Each
directory entry points to the first storage entry containing that key
name. A linked-list is then maintained from the first storage entry
with that key name to other storage entries containing the same key
name. A binary tree structure was chosen for the directory to make tree
modifications and key names searches efficient. It is the first key
name entered in the directory which becomes the root of the directory
tree; the next key is entered "above" or "below" it in the tree by
lexicographic order; etc.

Each directory entry has the following forms

I Key name I Ptr-to-first I Up-pointer I Down-pointer I

where "Keynamo" is a string of (up to) 10 characters (padded with blanks
to its right side)
"Ptr-to-first" is a pointer to the first storage entry containing the
"key name".
:_3qlointer" and "Down-voi tjr" are pointers to other directory entries,
whose key name are up or down, respectively, in the lexicographic
sense.

Each storage entry has the following form:

- 50 -

.J . I ______

N I nam-1 3 pt-1 I . . . Vam-n I Ptr-n I pt-to-datal

where Vi is the number of key names in the storage entry string.
(i-I to n) is a key name of a variable.

t (i-I to n) is a pointer to the next storage entry with the *sm key

nae.
ntr-to--ata is a pointer to auxiliary data fro the source language
statement.

Pigure 3,4 depicts an example of three storage entries an4 a

directory consisting of only three entries, X, Y, and Z, where Y is the

too of the directory tree. Such a structure was partially motivated by
similar ideas in the "Multi-list" file organization.

I i

* /

X- z ti-_--t
, ~ o , I Z t ,mr' de....az

z other data

Fi g. 3.4 Sample Directory and Storage unties

-52 -

3.3.3 STORA DFERXZS FOUD FOR MODEL SYATDME

The STOW mmchanism, described in the next section, is Called by

sAi '5 storing subroutines to store the MDEL statements for retrieval

(by US R MIV) in the later phases. For each type of MODEL statement,

the key nams in it axe stored in its storage entry. The non-key

information in the MCOEL sttement (information which is not used to

specify retrievals) is kept in description tables, which are connected

(by STORE) to the corresponding storage entries am was shown above.

Table 3.9 sumarizes the internal format of the storage entries and the

corresponding description tables for each type of MODEL statement. The

leftmost name in each entry is the name of the statement being stored.

The middle column shows the information appearing in the corresponding

storage entry (with the pointers omitted due to lack of space). The

right column shows the additional encoded information, if any, from the

statement. The key names beginning with a dollar sign ($) in the
storage entries are not user-proveded, but are inserted by the system
for its own information. The last name in each storage entry, for

example, identifies the type of statement.

I

.. .r fnII ..ulI I I l I

Table 3.9 Storage entries oimt for NDDEL:1

IMrOL Statgment Sahema Storane Entry Key Raw Aluxliryav Dgeriptjon

uMLiIEs module-name module-tnae V4O0UtZ nsD

SOURCE FIU a t. 20 ... 'tn $SOURCE at a2 ... an SRC? n

TARGET FILS. t 1 . tIp ... tjo $TARGE? t1 t2 ... to TARf n

filename IS FILE(I _OUP)j, ,rtill n am r a k 4FILS! VILE % o0Q-Cade Key-flog Ie-tar'
SOACE IS a. RSCA)*D o- SAM 0 nsort 0-co repet.
rg£Y IS k, ORO IS 0) I- ISAM key for r

1-cort key I-" repeat
record-no.e IS RECORD record-na" "i 2 , B DECO n I&embers members

0$1Le 02PECD usuibscriptsfirst sub.
second sub.

group-name IS GROUP
Iroupa....%n tro;p-nre m2 an GNP n (Dan ma record)

.6,

-4445

Table 3.9 Storage entries Format for
MDEL

a3

6 U

a a.

96 -

3. em

mI .9

c" MAI

-'A -

4444.9
C444.7

4.
~ 54...4.4

4.U4.1~ . 44445

I.

3.3.4 °nM STORE PRCEDURE

The STORE(S,D) Procedure has two parameters, S and D. S is the
string containing the key names which are to be stored and to be entered
in the directory. D is a pointer to previously built auxiliary data
from the source string. The latter usually is an encoded form of
non-key source language information.

Algorithm STORE shows the storing procedure. STORE receives the
key names from S and creates a storage entry for it (Steps 1-3). It
checks if they are in the directory (Steps 4-5, subroutine SEARCH DIR).
If the key is in the directory, then it follows the "pointer-to- first"

%h points to the first storage entry with that name (Steps 7-B). The
array of strings in that storage entry is scanned until the key name is
found. If its "nest" pointer is null (end-of-list), then it is set to
point to the newly created storage entry (Steps 6-11). If it is not,
the process is repeated until a null (end-of-list) pointer is found
(Steps 9-10). If the current key name is not found in the directory, it
is entered in the appropriate spot in the lexicographical position in
the directory (Step 6, subroutine CREATE DIR) and the pointer in the
directory is set to point to the newly created first storage entry
(Steps 7-6).

- 56 -

- . -.

Algorithm STORl : The Store Procedure

Paraneters: S-strinr of keys to be stored;

P-pointer to other data

(see Section 2.3.2 for diagrams of Data Stroctires)

(Subroutines called: CIFCK)IR, c.EPATE .EN1:TRY]

Step 1. Count MUY.

Step 2. Allocate the storage entry for S (call it SE, according to the
format showmn) .

Step 3. Connect PT.TODATA in SE to D.

Step 4. For each key name, perform steps 5 thrnugh 11.

Step 5. If key exists in the di.rectory (Alorithn C.IIFCr.-DIP), then Go
to step 7; else go to step 6.

Step 6. Create a directory entry for this key. (Alporithyn CTE:EP.AT.-
D;T.')

Step 7. Let D.-this directory entry.

Step S. If MR TO.IFST in Dr already points to a first storage entry
with this kcy name, then go to step 9; else n~o to step 11.

Step). Get the next storage entry in the list.

Step 10. If it is the last in list, then Ro to step 11; elsc go to
stop .

Step 11. Add the ncu SE. to the list.

Step 12. Return.

-57-
.4

3.3.5 THE RETRIEVE PROCEDURE

RETRIEVE(E,D,S,N,P) is the procedure for retrieving desired storage
entries, by searching through the data structures depicted in Figure 3.4
and Table 3.4. It is invoked by many routines described in subsequent
phases of the Processor. It has five input parameters as indicated.
RETRIEVE finds all the storage entries in which the given key name or
expression of key names, E, appears and furthermore checks whether the
first characters of data associated with the storage entries match the
string D. That is, RETRIEVE finds all the storage entries with keys

satisfying the logical expression E and other data D. RETRIEVE starts
its search at directory entry S, normally the root node of the
directory, and it returns a list of pointers P, to those storage entries
which satisfy the request of the calling program. The number of storage
entries satisfying the request is returned in N.

The logical expression used to retrieve strings can be any boolean
expression involving "key" names or names in the MODEL statements in
disjunctive normal form, where the first key in each term is
non-negated. For example, consider the following statement by a calling
program:

CALL RETRIEVE(KEYS, ', START, N, P);
KEYS might contain the string value ' PRICE &
-QUANTITY EXTENT 0. This makes RETRIEVE find all storage entries
(which correspond to all statements in the MODEL specification) in which
PRICE appears and QATITY does not appear, or statements in which
EXTENT appears. The null second parameter means that the auxiliary data
portion of each statement is immaterial. RETRIEVE would then start its
search and return a list of pointers in P to those storage entries which
satisfy the condition, and N would be set to the number of statements
that satisfy the condition.

Algorithm RETRIEVE is shown in the following page.

- 53 -

Algorithm .TO.V : The Rltri.ve Procedure

Paranetern: C-logical exprcssion strinR; S-pointer

to beginning of directory (inpitc);
P-I1st of pointers satlsfyinr r; Naintinber of
satisfyin!! entries

(see Figure 7a for diagrams of data
structures)

Step 1.et leading key nane K. of next conjunct from E. If
no more, !to to Step 22.
SOtep 2. Check directory for V (standard h~nary tree search
in subroutine SI:.RCI!-I? Given earlier).
Step 3. If found, then go to step 4; else ga to step 1.
Step 4. Set PSE-PT_TO_IRTS (pointer to first storage entry
with K)
Step 5. Add PSr to V list (temporary list of pointers)
Step 6. If K: in PSF. stora e entry points to another storage
entry with I, then go to step 7; else ,o to step 8.
Step 7. Set PSE to next storage entry in the list, go to

Step 5.
Step 8. If end of E, then go to step 20; else go to step 9.
Step 9. ret next sy-bol in E.
Step 10. If symbol-'&' then go to 3tep 14; else go to step
11.

Step 11. if symbol-'' then ro to step 12; else error
return.
Step 12. Add !ist of potnters in U to list of pointers in P
without duplication.
Step 13. Co to step 1.
Ste n 14. Cat next symbol.
Step 15. If symbol-'' then no to step 16; else go to step
13.

Step 16. (Case of conjoin nr nerated ter..n) eliminate
pointers in 1: to storage entries which also contain next key
nane in r.
Step 17. Co to step 8.
Step IR. (Case of conjoining non-negated term) eliminate
pointers in I to storageo entries which do not contain next
key name in F.
Step 19. Co to step 8.
Step 20. Add list of pointers in 11 to !ist of pointers in P.
Step 21. Set *?-number of pointers in P list.
Step 22. return.

S-59-

An example showing the retrieval mechanism to retrieve all storage
entries with key names "B" and "C" is given in Figure 3.5.

(I

'L1 3 3 OC -4" -"

ag m orI stats by getting 0 i

conjunct (Step 1) an serce t-he dietr o t(p2. I foud

itpt e ist o p s tll st ial eria

temporary list (Step 3-7). if there are other names in the conjunct
(steps 10, 14), then RETRIEVE eliminates from the temporary list those
pointers hose storage entries do not have the other names in the

conjunct (Steps 14-16). If there are more conjuncts in the expression,
then the process in repeated and additional pointers are addled to the

(260

P2- -

.. ..j A--5 I*...

list (Steps 12-13). When the end of the expression is reached, the list
of pointers to the satisfying storage entries and the number of pointers
are returned (Steps 20-22).

3.3.6 STORAGE STRUCTURES FOR ASSERTION STATEMENTS

Analysis of an assertion statement causes two storage entries to be
made for the satatement. (See also Table 3.9). The first entry has the
type ASTX and contains in its main part just the assertion label (system
generated) and a keyword $ASSERT. Its auxiliary data contains a pointer
to the syntax tree which represents in a parsed form the body of the
assertion. The second entry has the type ASTG and contains a list of
all the names which are sources and targets to the assertion. Sources
are all the names which appear on the right hand side of each equal
sign, (including subscript expressions) and within boolean condition
expressions. Targets are the names whose values are defined by the
assertion.

3.3.6.1 THE SYNTAX TREE FOR AN ASSERTION

The syntax tree of an assertion is constructed out of mutually
linked nodes. There are nodes of two types: non-terminal nodes which
have descendants and terminal nodes which have no descendants and
represent atomic syntactical units such as identifiers, numeric and
string constants. Each node corresponds to a phrase in the parsed
assertion, and if it is non-terminal the list of its descendants
represents the further breakup of this phrase.

3.3.6.2 THE STRUCTURE OF NON-MERMINAL NODES

The structure of non-terminal nodes is as follows:

I I n- I I Pointerl I I Pointerl
I TYPHI Number I Delimitl to Sonll ... I Delimitl to Son I
I I of Sonl #1 1 #1 I I #n I #n I

where "TYPE" is an integer code identifying the syntactical type of the
phrase according to the following legends

o - Conditional Assertion. Example: if A-B THEN C-D
1 - Simple Assertion. Example: A-B
2 - Conditional Expression.

Example: IF A) B THEN C ELSE 0
5 - Boolean Expressions. Example: (A-B) I (C-D)
6 - Boolean Term. Example: (A 5) A (C c- 3)
7 - Boolean Factor. Example: C 7
a - Concatenation. Example: All I I 'END'
9 - Arithmetical Expression. Example: (A*B)+(CD)

-61-

10 - Term. Example: A*B
11 - Factor. Examples A**2
12 - Primary. Example: A, B(1+1), (A+D)
13 - Function. Example: SUM(A,I)
14 - Subscripted Variable. Example: A(FOR.EACH.A)

"Number of Sons" is the number of components or subphrases that the
indicated phrase is broken into. Thus if the phrase is "A+B" it is of
type 9 (Arithmetical Expression) and it is parsed further into the
subphrases "A" and "B". The '+' delimiter will be stored as delimiter
number 2 in the current node.

The delimiters are encoded as integers according to the following
legend :

1 - ' '(Blank - No delimiter)

2 - 'IF' (keyword)
3 - 'THE'
4 - *ELSE'
5 -9=

6 -+

7 -

8 - '*' (Standing for multiplication)
9- ''

10 - ' (Exponentiation)
11 - 'I' (Alternation - Logical 'or')
12 - Of
13 - 'II' (Concatenation)
14 - '' (Negation)

15 -
1.6 -')

17 -
18 - >

19 - '>1

20 - '0
21 -

22 -

23 -

24- ''

"Delimiter 1, i1-, ..n" are the delimiters separating the subphrases.
The first one is the delimiter prefixing the whole phrase such as the

in the phrase -A or the ' in the phrase ' (AcB & BC)'. "Pointer
to Son i, i-l,..n" are pointers to other nodes which represent the
subphrases into which the current phrase is parsed.

3.3.6.3 THE STRUCTURE OF TERKINAL NODES

Terminal nodes are used to store constants such as variable names,
string or numeric constants. Their structure is as follows:

I type I str-length I value I

Where "type" is an integer code identifying the type of the constant

-62 -

according to the following legends
20 - character string constant. Example: 'A=BC'
21 - function name. Examples SU
22 - numeric constant. Example: 3.14
23 - variable name. Examplet PAY
24 - bit string constant. Example: 1001'3

"Str-length" is the length of the character string representing the
constant. Zt will be 3 for storing the variable name 'PAY'. "Value" is
the actual ch.-acter string representing the constant.

During later processing (Nodule DIEOW), all the terminal nodes
which refer to non-constants (types 21,23) are converted to a different
format) referred to an variable-terminal-nodes:

I Type I Node# I

'Type' an before is an integer code identifying the type of the name
according to the following legend:

25 - Variable type. The associated name is a variable and NOE_ is
the dictionary entry number of this variable.

26 - Subscript type. This stores the name of a subscript. NODE#
refers to a dictionary entry number. This dictionary entry can
be of one of the following types:
'GIR', 'RECD', or 'IF', which must be repeating. If this entry
name is X then the name of the subscript is POR._AH. X.
'$SUB" - This is a global subscript declared by the user.
'' - This is a free subscript added by the system. It is one
of the subscripts 31..to$9.

27 - Function Name. NODE* is an index in a list of functions
recognized by the system. See Table 3.10 for the list.

An overall example consider the syntax tree for the assertion:
If A-8 I CcD & 24-F

THEN X(FOREA CH.X) - (Y+Z)*'TII 'S';
ELSE X(FOR.EA_ .X) - '0';

It is described in Fig. 3.6, with the modification that delimiters are
represented by themselves rather then in their encoded form, to improve
readability.

- 63 -
4

.l ,I;

-7\T

6*A

IFig. 36Syntax Tres For Example -Assertion

-64-

I

3.3.7 THE SYNTAX TREE CONSTRUCTION ROU'INES

Several routines are responsible for the construction of the syntax
tree of an assertion. They may be classified and described as follows:
Setup Routines: On entering a parse for a phrase of a certain type (by
SRP) an appropriate setup routine is called. This routine allocates a
temporary node area (temporary since we do not know yet how many
subphrases or components it will have), assigns a type number
corresponding to the type of the phrase and resets a component count to
0.
There is a setup routine corresponding to each phrase's type. They are
for the non-terminal types (listed in increasing type code order):

SVWO. SVASSR (SVA~SEl), SVBEXP, SVBTI, SAVF1,
SVCON, SVAE, SVTZM, SVFAC, SVPRIM, SEMD, SETSOBV.

For the terminal types (codes) 19), a string area is allocated and
a type variable is assigned, too. No setup routine exists for bit
string since the distinction between it and a character string can be
made only at the end of its scanning.
Save Routines: These are common to all non-terminal phrases. They
alternately store delimiters and pointers to components, increasing the
"number of sons" counter appropriately. These are all stored in the
temporary node storage area.

* SVOPI - Stores a first delimiter. If this routine is not called the
first delimiter is always set to 1 (- '

SV"Pi - Stores a pointer to the first component.
SCWDP - Stores the recently scanned delimiter in the next available

delimiter slot. Then increment the "number of sons" counter.
SVNXOEP - Stores a pointer to the recently assembled subphrase in the

next available component slot.
Storing Routines: These finalize the node structure, after scanning of
the phrase is complete. Since size of strings and number of sons are
known by this time, a permanent node space is allocated and the contents
of the temporary storage entry transferred there. The temporary storage
area is then freed.

STALL - This is the storing routine for all the non-terminal nodes.
It first checks to see if the assembled node is not trivial. It will be
trivial if it contains only one component and the first delimiter is
blank. In this case no permanent storage is made for this node. This
check eliminates redundant nodes in the syntax tree. If the node is not
trivial, a permanent allocation is made for it and the proper contents
transferred there.
For the terminal nodes we have separate storing routines:

STWrJK - Stores a numeric constantI STFUN - Stores a function name
SVSTRUG - Transfers a string constant to the storage area before calling

on STR CON
MTJIT - Stores a bit string

STILCON - A common routine for storing all constants. It allocates a
permanent node storage and transfers type, length and string
into it.

-65-

ANY IT CEIL CA
COPY O~Rz IDECIML 9",
IFALSE IFIXED I FwA! FLOOR
law ~ I 4D IN LENGT I LG

I" I mmMD IPAME
REPRAT IrWID)WRM mmRum~R
ISELECT si 5Ia SSM..FN STRINM
ISUBSYR I sun I TInE I TRANSLATE I

I TRUE I UNSPEc I UPDATE I VERIFY I

Table 3.10 The funCtions reCoqni~ed by the NGDEL processor.

IG

CHAPTER 4

PRECEDENCE ANALYSIS

4.1 INTRDUCTICON

A MODEL specification consists of many data description or
assertion statements. In principle, the data description statements
specify the structure of data entities such as file, group, record, and
field. The assertions specify the relationships between the data

entities. The data entities and the assertions are referred to here as

o entities. On the other hand, in an executable program there are
proaram events such as I/0 activities, computations, or getting data
ready. The events in a program generated by the MODEL systen correspond
to entities in the specification. For example, a file entity
corresponds to an event of opening a file or closing a file; a record
entity corresponds to reading a record or writing a record; and an
assertion entity corresponds to computing a target variable. The
sequence of the program events is not given by the user. Instead, it is
determined by the MODEL processor under the constraints of precedence
relationships among the program events. In this chapter we discusa the
analysis for recognizing the precedence relationships between program
events and representing them in a directed graph.

Based on the specification we can find the unique symbolic names
assigned by the user to data entities. Additionally the MODEL processor
automatically assigns a unique name to every assertion. Similar to
other compilers, the MODEL processor maintains a symbol table called
dictionary which contains all the symbolic names of program entities and
their attributes.

The dictionary is created by a procedure CRDICT which finds all the
entities in the program specification and stores their names into the
dictionary. Except for some special cases described below, there is a
correspondence between each statement in the specification and an entity
in the dictionary.

Attributes of a symbol such as the type (file, group, field, ... ,

est), the number of dimensions, the structural relation of it to other
symbols are stored in the dictionary during the process of precedence
analysis, and later during dimension analysis. This information is used

- 67 -

later to determine the execution sequence.

Various types of relationships among program entities have direct
1 implication on the execution sequence of their corresponding program

events. The precedence relationships among the program events are found
based on the analysis of the program entities. For example, a
hierarchical relationship exists when one data entity contains another,
such as when a file contains a record, a record contains a field, ... ,

etc. A dependencv relationship exists between a field and an assertion
when the field is either a source variable of the assertion or its
target variable. There are also relationships between data entities and
their associated control variables. The events and their precedence
relations are represented by a directed graph called an Array Gap .

The Array Graph is created by two procedures, ENHRREL and ENECDP.
The ENHRREL routine analyzes data description statmnts and finds the
precedence relations caused by the hierarchical relations between data
entities. The ENEXDP routine analyzes assertions and finds the
precedence relations from the dependency relations among data fields and
assertions. It also finds the precedence relations among data entities
and their associated control variables. Since the Array Graph contains
the complete precedence information, it is used to check the
comleteness and consistency of the specification and to determine the
computation sequence.

4.2 REPRESENTATION OF PRECEDENCE RELATIONSHIPS

4.2.1 DICTIONARY

Every program entity has a full name which uniquely identifies it.
Most of the entities have a single component full name. When two data
entities share the same name, it is necessary to qualify the name with
their respective file names to distinguish them. Two data entities
within one file are not allowed to share the same name. A file name may
have at most two instances denoted as NEW or OLD followed by an
identifier. Thus a data entity may have a full name of three
components: NEW or OLD, file name, and data name. Control variables
have one component more than the associated data entities, i.e., a
reserved key name. The full name and the attributes of each program
entity are stored in the dictionary.

In order to use memory efficiently, memory space for the entries of
the dictionary are allocated dynamically. Pointers to the dictionary
entries are stored in a vector DICTPTR and the total number of pointers

in the vector is denoted as DICTIND. With this arrangement, we can
allocate memory piecewise and access the information randomly. Since
each program entity corresponds to a node in the Array Graph, we will
call its entry number in the dictionary node number. The organization
of the dictionary is shown in Fig. 4.1 and the attributes in the
dictionary are listed in Table 4.1.

- 6 -

~i.-

node# DICTPTR

1 .

2I

N| I A ,. 1,) I . . .N),,

DrCTIND

Fig. 4.1 Organisation of the dictionary

,.

! -69-

41
I I * *

I.

Table 4.1 Attributes in the Dictionary

XDICT - Is the full nam of the entity.
XDNASZZE - Is the number of characters in XDICT field.
XUKIQ E - Is the smallest name by which the entity can be identified

uniquely. If the file name component of a full name is not
necessary to identify the entity uniquely, then XUNrQ. is set
to the name without file name component; othzwise, XUNIQUE is
set to 2DICT.

XDICTYPE - Specifies the type of the entity. Following are the possible
values:
ASTX - An assertion.

4 GRP - A group.
FILE - A file.
FXCD - A record.
NMDL - The specification name.
SPCH - A special name prefixed with a keyword such as END, SIZE,

LEN, POINTER, NEXT, SUBSET, EIDFILE, and FOUND.
$SUB - User or system declared subscripts, including the

standard subscripts: SUB1, SUB2, ... , SUB10.
3$ - System added subscripts: $1, $2, ... , $10.
M$1 - System loop variables: $11, $12, $110.

XMINASS - Contains a pointer to the storage of the statement which
defines the entity.

- 70 -

Table 4.1 Attributes in the Dictionary (Continued)

XNRICS - This count is meaningful only for file entities and holds the
number of different record types contained in the file.

XPARFILE - Holds the node number of the parent file entity for all input
and output data items.

XPAIMC - For data items below the record level this field holds the node
number of their parent record entity.

XINP - Is '-'B if the entity is in input file, and '0'B otherwise.
XOUP - Is ''B if the entity is in output file, and ''B otherwise.
XISM - Is 'I'B if the entity is an ISAN file, and ''B otherwise.

XEZYED - Is '1'B if the data entity is in a file for which a key name
was specified.

XLEN-DAT - The length in bytes of the data entity.
XREPTNG - Is '1'B if the data entity is repeating.
XVARYREP - ts '1'B if the data entity has a varying number of

repetitions.
XMW_REP - The maximal number of repetitions which was declared for the

data entity. If no maximal repetition is declared, XDAZREP is
set to1.

XVAIRS Is '1'B if the entity contains a descendant below the record
level and the descendant has a variable structure.

2

-I

- 1

Table 4. 1 Attributes in the Dictionary (Continued)

XSUBREC - Is 'I'B if the data entity is a member of some record type.
XISSTARRED - Is '1'B if the data entity is repeating and has a

undetermined repetition.

XPATHER - The node number of the data entity which is one level above
the current entity in the data structure.

XSONl - The node number of the leftmost descendant of the current
entity.

ROTHER - The node number of the immediate right neighbor of the
current entity in the data structure.

XENDB - The node number of the control variable END.X if the currnt
entity is X.

XEXISTB - The node number of the control variable SIZE.X if the current
entity is X.

XVIR-DIM - The conceptual (virtual) dimensionality of the entity.
XSUBSLST - A pointer to the node subscript list associated with the

entity.
X$SUCCESSORS - The number of edges in the XSUCC_LIST.
XSE)CC_LIST - A pointer to the list of edges emanating from the current

entity.
XSPREDECESSORS - The number of edges in the XPRED_LIST.
XPREDLIST - A pointer to the list of edges coming into the current

entity.

4.2.2 THE ARRAY GRAPH

The Array Graph is a directed graph which represents the precedence
relationships among program events. The nodes in the Array Graph are
the program events and the edges are the precedence relationships. One
program event in the Array Graph will correspond to one program entity.
Thus the nodes in the Array Graph correspond to the program entities in
the dictionary. The edges between nodes are stored in edge lists
associated with those nodes. The attribute SUCC_LIST of a node contains
a list of edges emanating from it and the attribute PRED_LIST contains a
list of edges terminating at this node. We can thus find the successors
as well as the predecessors of any node.

The nodes in the Array Graph are compound nodes, i.e., an entire
array of data is represented by one node. Also each assertion is

jrepresented by one node, independently of how many array elements it
defines. The range of each dimension of a compound node is stored in
the node subscript list associated with the node. The edges in the
Array Graph are comvound edges which denote arrays of relations between
two compound nodes. With each edge are also stored the types of
subscript expressions used in the relations between the source and the
target node of the edge. The meaning of the Array Graph is made more
precise by considering the corresponding Underlying Graph (UG), where
every array element is represented by one node. An assertion node in
the Array Graph may be expanded in the UG into as many nodes as the
elements of the array which it defines. Edges are drawn between the
simple nodes. The UG may be an enormous graph which is impractical to

- 72 -

analyze. Sometimes the actual number of array elements is not known
until run time. Thus it is impossible to create the UG of the
specification. In contrast, the Array Graph is more compact and easy to
analyze.

4.2.2.' DATA STRUCTURE OF EDGES

Every edge from a node S to a node T has a uniform format:

t
T(Ul, ... , Uk) c- S(Jl, Jm)

where t is the type of the edge,
k is the dimensionality of node T,
m is the dimensionality of node S,
Ji, l<i<=m, are subscript expressions appeared on

the ith dimension of node S.
Ui, lc-i<=k, are the node subscripts associated with

the node T.

The subscripts UIl, ... ,Uk of the target node T are stored in the
attribute XSUBSLST of T in the dictionary. Therefore they are not
specified in the edge. In the later discussion, a type 4 subscript
expression Ji will be indicated by an '1' in the ith dimension of the
source node.
An edge is represented by the following data structure:

SOURCE : The source node of the edge.
TARGET : The target node of the edge.
EDGETYPE : The type of the edge.
DINDIF : The difference between the dimensionality of the target

node and the source node.
SUBX : A pointer to the subscript expression list (Jl, ... ,Jm).

4.2.2.2 DATA STRUCTUVRE OF SUBSCRIPT EXPRESSION LIST

A subscript expression Ji can be classified into one of the
following seven categories according to its composition (refer to
section 3.3.2). Type 4 subscript expression is referenced later as a
general subscript *xression. Types 5, 6, and 7 subscript expressions
are added for the efficient implementation of some list type
functionsPNPR 90]. They are basically of the form X(I) where X is a
variable but used to subscript another variable B in B(X(I)). This form
of subscript expression is referred to as indirect indexing. The array
used in indirect indexing must be integer valued with non-negative
entries. The system will analyze indirect subscripts only if the
indirect indexing array X(I) is sublinear, namely if it is:
a) Monotonic, i.e., if IJ then X(I) 3= X(J).
b) Grows more slowly than I, i.e., X(I) <- I.

- 73 -

The system can test the indirect indexing array automatically to
determine if it is sublinear by the following simple criteria. In the
assertion that define the indirect indexing array X(I), the value of the
right hand side must be either 0 or 1 for 1-I and must be equal to
X(I-l) or X(I-l)+l for Il. Thus the system will examine the assertion
to check if it is in the forms

X1() - IF I-1 THEN (1 I 0)
ELSE (X(I-l) I X(I-1)+l)

An element in a subscript expression list is defined by the
following data structure:

NXTSUBL : A pointer to the next element of the list.
LOCALSUBS s If the subscript expression is of the form Uq[-cl or

X(Uq[-c])[-k], then LOCALSUBS is q, i.e. the ordinal number of
the subscript Uq as it appears in T(Ok, ... l).

APR-NODE : The type of subscript expression.
INXVEC : The node number of the indirect indexing vector X if the

APR_MODE is 5, 6, or 7. Otherwise, 0.

4.3 CREATION OF THE DICTIONARY (CRDICT)

The procedure CRDICT analyzes the statements of the specification
and enters all the program entities into the dictionary. To find all
the data entities we start from the top level of data structures and
then trace down the structures. The structures whose root is a file
listed in the SOURCE FILE or TARGET FILE statements of the program
header are considered external files, i.e. input file or output file.
If a data structure is not part of any input or output file, it is
considered an interim variable which is computed as any variable in an
output file but not written to the external storage.

Corresponding to each input or output file, there is a file entity
entered into the dictionary. If a file named F is served both as a
source and a target file, then two file entities named OLD.F and NEW.F
will be entered into the dictionary. Starting from the file entity we
can find its immediate descendants from the file description statement,
and the descendants' names will be prefixed by the file entity's name.
If the root of a data structure is not a file, we will consider INTERIM
as its file name and all the decendants will be put into dictionary,
too.

As we analyze a data structure, we also construct a tree
representation for it. For every data node we store pointers to its
father, leftmost son, and younger (i.e. immediate to its right side)
brother in the attributes XFATHER, X5ON1, and XBROTHER respectively. We
will illustrate this with an example in Fig. 4.2.

- 74 -

A f,

.w

X IS GROUP (Y,Z) ;

Y IS FIELD ;

Z IS FIELD ;

x

X = XFATHER(Y)

X = XFATHER(Z)

y=XSON2L(X)

Z = XBROTHER(Y)

Fig. 4.2 Tree representation of data structure

After all the data entities are entered into the dictionary, a
simplified name is derived for every data entry. If the file name
component can be omitted from the full name without causing any
ambiguity, the simplified name is the reduced name. Otherwise the
simplified name is the same an the full name.

Other types of program entities such as module name, assertions,
and subscript variables are defined by a specific type of statement
respectively and there is a one-to-one correspondence between the
statements and the entities. We can retrieve these types of statemaents
from the associative memory and enter the entities into the dictionary.

Finally we will put control variables into the dictionary. For
each type of qualifier keyword, we find from the program specification
all the qualified names with that qualifier. Next we search the
dictionary for the suffix name. If the suffix is a declared data
entity, the full name of the control variable is formed from the full
name of the associated data entity. Otherwise, the qualified name is an
unrecognizable symbol and is reported as such to the user.

4.4 CREATION OF ARRAY GRAPH

- 75 -

4.4.1 ENTER HIEMAIICaL RELKTIOISHIPS (ENHRREL)

The data stored in external sequential files are simply a string of
bits. The use of data description statements allows the user to treat
them as structured. Therefore, the system has to transform the data
files from a linear form to the structured form which in described by
the user. For this purpose, we envisage that there are two program
events corresponding to each data entity, one for opening the data and
the other for closing the data. The sequential order of data in the
external file requires these opening and closing events be arranged in a
strict order. The precedence relationship among these program events
can be established an follows. If a data entity contains some members,
then its opening event precedes the opening event of its first member
and its closing event follows the closing event of its last member. In

addition, the closing event of its nth member precedes the opening event
of its n+lth member. In the case that a data entity is repeating, then
the closing event of its n-lth instance precedes the opening event of
its nth instance. Fig. 4.3 shows the precedence relationship of a
sequential file. Because the data node B is repeating, there is an edge
from the n-lth instance of the closing event of node B to the nth
instance of the opening event of node B. The edge is shown as a dashed
line. The existence of this feedback edge causes a cycle in the Array
Graph and this cycle ensures us that the reading of an instance of the
field D will be followed by the reading of an instance of E. It should
be noted that the subscript expression associated with the edge from the
event C.B to the event O.B is of the form 1-1 which allows us to remove
it and break the cycle during the scheduling phase.

- 76 -
-4

A IS FILE (B(*),CC*)) ;

B IS RECORD (D,E)

C IS RECORD (F,G) ;

D,E,FG ARE FIELD ;

O.X: opening event for data X

C.X: closing event for data X

Fig. 4.3 Precedence relationship of a data structure

We envisage that for each field entity there is a third node which
corresponds to the available event of the data. The opening event of an
input field must precede its available event, and the closing event of
an output field should follow its available event.

This view assures us that we can always read the input files
sequentially and store them in the main memory before any coputation
starts. If there are variable structures, i.e., structures of varying
field length or varying number of repetitions, then we may have to
include some assertions in the reading process. Afterwards we can do
all the computation internally conforming with the constraint of data
dependency Which is implied by the assertions. At the end, all the

-77-

fields in the output files are available and the informations for
controlling the variable structure are available, too. We then take the
data from main memory, assemble them into records, and write the records
sequentially.

Actually we have in the Array Graph only one node, instead of the
open, close, and available nodes mentioned above, for each data entity,
as this helps compiler efficiency. For input files, we can view the
nodes as corresponding to the opening events. For output files, the
nodes corresponding to the closing events. The records stored in a
sequential file have to be accessed in a strict order. Therefore, there
is a precedence relationships among the data entities of an input or
output file to assure that the records are accessed in the proper order.
On the other hand, a record is composed of fields. The membership
relation between a record and its constituent fields implies a
precedence relationship, i.e. no field in an input record will be
available until the record is read in. Similarly all the fields in an
output record should be available before the record can be written out.

We will use the following definitions in discussing tree

structures.

Definition For a data entity G, SOI(G) denotes its leftmost son.

Definition For a data entity G, RSON(O) denotes its rightmost son.

Definition For a data entity G, CEB(G) denotes the closest elder brother
of G, i.e. the data entity which is to the immediate left of G
among all the brothers of G.

Definition For a data entity G, CYB(G) denotes its closest younger
brother, i.e. the data entity which is to the immediate right of G
among all the brothers of G.

Definition For any tree with node G as the root, RDK(G) denotes the
rightmost node on the frontier of the tree.

Deinition For any tree with node G as the root, LDK(G) denotes the
leftmost node on the frontier of the tree.

The precedence relationships in different file types is discussed
in the following.

1) input sequential file. Since the records in a sequential file are
read in one at a time, the precedence relationship needs to assure
that the records are read in the order they are present in the input
file. A record may be composed of many fields. Therefore, after a
record is read, it should be unpacked to get all the fields. If the
records in a file are not unpacked in the order they are read, then
we will need memory space to store the records. Therefore, it is
advantageous to unpack the records when they are read in. This
implies that all the fields in a sequential file will become
available in the order they occur in the external file. Three kind
of edges are drawn among the data nodes in an input sequential file.

- 78 -

a) Assume that a data node G is n dimensional. If SONI(G) exists and
is m dimensional where m may be either n or n+l, then the
following edge is drawn.
SO=l(G)(Jl,....J) c-la- G(Jl,...,Jn)

b) Assume that a data node G is n dimensional and FATHER(G) is k
dimensional where k may be either n-i or n depending on whether
node G repeats or not. If CEB(G) exists and RW(CEB(G)) is m
dimensional, then the following edge is drawn.

G(Jl,...,Jn) c-lb- RDN(CEB())(Jl, ...,Jk,*,...,*)
c) Assuming that a data node G is n dimensional. If it is repeating,

then the following edge is drawn.

(Jl,...,J) C-IC- RDtG)(Jl,...,J-i,',....)
n n

If a data node in an input sequential file corresponds to the
opening event of that data, we can interpret the above edges in the
following way. The edges of type la say that a higher level data
instance should be ready before all of the data instances
corresponding to the first member of it can be read. The edges of
type lb say that all the brothers within the same instance of their
father should be read in the order they are declared in the data
structure. The edges of type lc say that if a data node is
repeating, then one instance of it is not ready to be read until the
last field in the previous instance of it is read.

2) Output sequential file. The records of an output sequential file
should be written out in a strict order. There may be several fields
in a record, therefore, we may have to pack the fields before
writing. Packing the fields when they become available is convenient
for the code generation but poses extra restrictions on scheduling
the assertions. For example, suppose a record node R contains three
fields A, B, and C. If we insist that fields A, B, and C should be
available in that order, the user would not be able to define the
value of A in terms of C. Therefore, at or above the record level
the precedence relationship requires that the records be written in
strict order but below record level the precedence relationship will
only require that the constituent fields of a record are ready before
the record is written. Therefore, fields in a record do not have to
be computed in the order they are packed into the record.

Three kinds of edges are drawn among the data entities above and
including the record level of an output sequential file.
a) Assuming that G is an n dimensional data entity above the record

level and RSON(G) , i.e. the rightmost son of G, is a
dimensional. The following edge is drawn from RSOH(G) to G.
G(Jl,...,Jn) -2a- RSON(G)(Jl,...,Jn,*)

b) If node G has a younger brother, then an edge will be drawn from
node G to LDN(CYB(G)). Let G be an n dimensional node, FIKTER(G)
be a k dimensional node, and LDK(CYB(G)) be a a dimensional node.
The edge to be drawn is as follows.

c) If node G is repeating, then the following edge is drawn from G to
LD(G). Let G be an n dimensional node and LDK(G) be a a
dimensional node.

-79-

LDWG)(J1,...,Jn,...JM) 4-2c- (Jl,...,Jn-1)

If we imagine that a data node in an output sequential file
corresponds to the closing event of that data, then the edges
mentioned above have the following interpretation. An edge of type
2a says that a data instance can be written out only after all the
data instances corresponding to its last son are written out. An
edge of type 2b says that all the instances of an elder brother
within the same father instance should be written before any instance
of its younger brother can be written. An edge of type 2c says that
if a data node is repeating, then an instance of it cannot begin to
be written until the previous instance is completely written.

Below the record level in an output file, the precedence
relationships assures that a record will not be written out until all
of its constituent fields are available. However, the relative order
in which the fields are computed is not restricted. We will simply
dram edges from all the descendants of a record node to it. Fig. 4.4
illustrate the edges in an output sequential file.

2 IA IS FILE (B(*),C(*))

B IS RECORD (D,E)

C IS RECO RD (F,G)

1),E,FG ARE FIELD

D (DI) E (El) F (FI) G (GI)

(B) (Cl)

A

Fig. 4.4 The edges in an output sequential file

3) An input IM file. In an ISM file, there is only one type of

- 0 -

record. The dimensionality of the record node IR is the mss as that
of the associated control variable POINTE.R. Since the record

instances are accessed with the keys, it is possible to read the
records in the order of the keys. If the I8A1(file is a pure source
file to the program, the keys in the POINTZR. IR array can be used in

any order. On the other hand, if the ISAm file is used as a source
and target file, the records should be processed in a sequential way,
therefore, the keys in the POINTER array should be used sequentially
to access the records. Below the record level, we can have the

similar precedence relationship as in a SAN file because we may have
to unpack the fields.

4) An output ISM file. If an ISA(file is a pure target file, the
output records will be added to the file. If it is a source and

target file to the program, then only the selected records may be
updated. In order to assure that each updated record includes the
effects of previous updates, we will have to update and write out a
record before the next record is read in. Therefore, the keys in the

POINTER array should be used sequentially. However the fields in an
output record can be computed in any order. Below record level the
precedence relationships only reflect the membership of the fields
within the record.

//

5) Interim variable. There are no I/O actions concerning interim
variables. They are stored in main memory and referenced as fields.

Therefore, there is no relative precedence relationship among the

interim fields. But we still draw edges which reflect the membership
among the data entities to facilitate range propagation (refer to
Chapter 5). Since an interim variable is considered to be part of an
output file except that it will not be written out, the edges are
drawn from the descendants to the ancestors.

4.4.2 ETER DEPENDENCY RELATIONSHIPS (ENECOP)

Two types of assertions, namely simple assertion and conditional
assertion, may be used to define the values of interim variables and

output variables. The execution of an assertion depends on the
availability of all of its source variables, and its execution makes the
target variable available. This is because a data entity must be
defined before it is referenced and a data entity becomes available
after the assertion in which it is the target variable is executed.

Procedure ENEXDP examines all the assertions twice. In the first
pass, it checks whether the target variable of an assertion defines a
sublinear function and can be used as an indirect indexing vector or

- not. An indirect indexing array should be defined by an assertion of
the following form.

X(I) - IF 1-1 THEN (0 1 1)

ELSE (X(I-l) I X(I-l)+l)

During the second pass, it analyzes every assertion and enters the
precedence relations caused by explicit data dependency into the Array

4

- 61 -

Graph. Given a simple assertion, the left hand side of it is scanned to
find the target variable. Then the expression on the right hand side is
scanned to find all the source variables. For a conditional assertion,
the THEN parts, ELSE parts, and the conditional expression parts are
scanned in that order to find all the source and the target variables.
The source variables in a conditional assertion are found in the
conditional expressions, the THEM parts, and the ELSE parts. For every
source variable an edge is drawn from it to the assertion node. It
should be noted that one assertion defines one target variable only and
no more than one target variable can appear in a conditional assertion.

The edge from the source variable to the assertion is of EDGETYPE
3 and the edge from the assertion to the target variable is of EDM_TYPE
7. The DIDIF is the dimensionality difference of the target node and
the source node of the edge. The types of the subscript expressions of
a source variable are stored in the subscript expression list associated
with the edge. It should be noted that the subscript expressions of the
target variable define a mapping from the node subscripts of the target
variable to the node subscripts of the assertion. Because the edge
corresponding to the occurrence of the target variable is drawn from the
assertion node to the target variable, instead of from the target
variable to the assertion node, the mapping should be inverted to form

. the subscript expression list of the edge. In Fig. 4.5 the data
dependency of an assertion is shown. Notice that there is a list of
subscripts associated with every node in the graph. For example,
variable A is a two dimensional array. Subscripts <A, 13 and <A,2)
correspond to the first and second dimension of array A. The edge
leading from node A to al has a subscript expression list associated
with it. The subscript expressions are ordered in the way they are used
in the subscript variable A(I, J-l).

*"

- S2 -

al: C(I,J) A(X,J-1) + B(I,4)

7 (CIC2)

Fig. 45 The data dependency of an assertion

In addition to the explicit data dependency found in an assertion,
there exists some implicit data dependency between the data entities and
their associated control variables. Let TROT denote the name of a data
entity and NODE denote the name of the associated control variable which
is composed of a keyword PREFIX followed by the name of the data entity.

1. If PREFIX - 'POINTER', then verify that TROT is a keyed record and
draw an edge.

TO <-5- POINTER.TROT, D1NDIF - 0
2. If PREFIX - 'SIZE', then verify that TRO is repeatLng and draw an

edge.
TWP1() <-13- SrZE.TRGT, DrD!IF - 1

3. If PREFIX - 'END', then verify that T OT is repeating and draw an
edge.

.7T(1) <-14- END.TROT(I-i), DINIF - 0
4. If PREFIX - 'FOUND', then varify that TROT is a keyed record and

draw an edge.
FOUND.TJWT -15- TROT, DI1DF - 0

5. If PREFIX - 'NE=', then verify that TROT is a field in an input
sequential file and draw an edge.

NEXT.TRGT c-16- TROT, DIDIF - 0
6. If PREFIX - 'SUBSET', then verify that TROT is an output record.

If it is an output record, then draw the following edge.
TROT -17- SUBSE.TROT, DINDIF - 0

7. If PREFIX - 'LEN', then we draw an edge.
T P c-20- LE.TRGT, DIDIF - 0

-93 -

The subscript expression lists of these edges are for the moment
empty. They will be constructed by the procedure FILLSUB later
according to the EDGETYPE.

4.5 FINDING IMPLICIT PREDECESSORS (ENIMDP)

Many efforts have been made to make MODEL language tolerate scme
incompletenesses and inconsistencies in the specification. When
incompletenesses and inconsistencies are found, warning messages or
error messages are sent to the user. If practical, the MODEL processor
tries to correct the specification in a reasonable way.

If an interim field is not defined by any assertion, an error
message is sent to inform the user. It is probable that the user forgot
to write the assertion. Therefore, the system should request an
assertion from the user. However, if a field in a target file is not
defined explicitly, the MODEL processor will try to find an implicit
source to define that field. The MDDEL processor tolerates this kind of
incompleteness and saves the user work of writing assertions for merely
copying fields from a source file to a target file.

Given a field in a target file which is not explicitly defined by
any assertion, we will search for a field with the same name in another
file according to the following order of priority. The idea is to make
some reasonable assumption so that the undefined field will get a value.
Rule 1: If the undefined field is in a file which is both a source and

target file, then the value in the corresponding field in the
old record is taken as the value for it.

Rule 2: If Rule I does not apply, then the processor tries to find a
same-named field in other source files. If one is found, it is
assumed to be the source. If more than one is found, then the
processor arbitrarily picks one as the source and prints a
message to indicate that there was ambiguity.

Rule 3: If the above are unsuccessful, the processor tries to find a
field with the same name in other output files. If one is
found, it is taken as the source, and if more than one is found,
then one is taken arbitrarily, with a corresponding message to
the user regarding the ambiguity.

In the above cases where an implicit predecessor is found
successfully, an assertion which defines the target variable by the
implicit predecessor is generated as if it were entered by the user.

4.6 DIMENSION PROPA ITION (DIMPROP)

The source and the target variables in an assertion may be arrays.
In order to reference an element of an N dimensional array, the user
should subscript the array name with N subscript expressions. A
subscriptless dialect of the MODEL language allows the user to omit

i- .4 -
I i

subscripts in assertions in certain cases which do not lead to
ambiguity. Therefore, the number of subscript expressions following an
array variable does not necessarily indicate its actual dimensionality.
Furthermore, the declaration of a multi-dimensional interim array may be
simplified by omitting the data description statements for the higher
level groups. The omission of subscript expressions in assertions and
the omission of the higher level data description can be viewed as
incompleteness or inconsistency of the specification. However, they are
tolerated by the MODEL processor, and a process called dimension
Propaaation is used to resolve inconsistencies of the dimensionality for
the interim variables and missing subscripts in assertions.

All the nodes in input and output files should be declared
precisely, using data description statements. Their number of
dimensions can therefore be derived directly from the data description
statements. Associated with every edge there is a field DINDIF which
denotes the dimension difference between the source and the target nodes
of the edge. The number of dimensions of a node can be propagated along
the edges of the Array Graph.

The dimension propagation algorithm is briefly described in the
following. Let N denote the set of nodes in the Array Graph, array C
store the current number of dimensions, and array D store the initially
declared number of dimensions for each node in N. A queue Q keeps all
the nodes whose calculated dimension could possibly be changed.
Algorithm 4.1 Dimension Pro2aoation
Input. Array Graph.
Output. VR._DIM: An attribute in the dictionary which contains the

number of dimensions of a node.
1. For each node n in N, let C(n) be D(n) and put node n in Q.
2. If Q is empty, then exit.
3. Pick a node n from Q, remove it from Q. Let dim be 0.
4. For every incoming edge from node a to n, let dim be the maximum of

dim and C(s)+DINDIF.
5. For every outgoing edge from node n to t, let dim be the maximum of

dim and C(t)-DIHDIF.
6. If dim<-C(n), go to step 2.
7. Else, the node n ham a new updated dimension. Let C(n) be dim.
9. For every incoming edge from node s to n, append a to Q.
9. For every outgoing edge from node n to t, append t to Q.
10. If more than N*N ries have been taken from the queue, then halt and

issue an error message - there exists a propagation cycle.

If the process converges, then every node will have a finite
dimension. However, it is possible that a cycle in the graph causes an
endless increase in the dimensions. Consider for example the following
specification.

(F, H) ARE FIELD
I IS SUBSCRIPT ;
IF 1-1 THEN s(I) - s p ELSE H(I) - F+1 p

IF Zl THIEN P() 6 ELSE F(r) - H+l

- 5 -

II

The first assertion implies that the dimension of H is larger by 1
than that of F, i.e. C(H).C(F). The second assertion states that
C(F)3C(H). Applying our algorithm to this specification will result in
endless loop of alternately incrementing C(H) and C(F). In this case
the system will send out an error message indicating that the dimension
propagation process is in an infinite cycle and also print out the nodes
involved in the cycle.

4.7 FILLING MISSING SUBSCRIPTS IN ASSERTIONS (FILLSUB)

In the dimension propagation phase we have determined the number of
dimensions of every node. If the number of dimensions of a node is
larger than its apparent number of dimensions, it is necessary to add
the respective subscript and data structures. This is performed in the
following three tasks.

Task 1: Generate the node subscript list.

If the node X is a data node, its node subscript list is (displayed
here from last to first):

(FOREACH.Ak , fOREACH. Al1)
where Ak, ... , Al is the list of the repeating ancestors of X in a top
down order. If X itself is repeating than Al is equal to X.

If the node is an assertion node, then it has already been assigned
a partial subscript list by ENEXDP. This is the list of apparent
subscripts in the assertion, i.e. all the subscripts appearing either
on the L.H.S. or the R.H.S. of the assertion. Let the assertion be of
the form:

al: A(Ik, ... , 11) - f(....)
Let the R.H.S. contains the subscripts Jl, ... , Ja not appearing on the
L.H.S. and hence assumed to be reduced. Then the partial list assigned
to al is (1k, ... , I1,Jm, ,Jl) and its apparent dimensionality is
determined to be d-k+m. As a result of the dimension propagation
process we may have recomputed a new dimensionality c for al where c,-d.
This will cause n-c--d new subscripts to be added to the subscript list
of al which now appears as:

($n, lik,...Il,JW ,Jl)
where $1, Sn are the name of the new subscripts.

Task 2 Fill in Missing Subscripts in the Assertions.

Consider an instance of a subscripted variable A(IJ, Ii) in an
assertion. The calculated dimension VIR,_DIM for array A yields a value
d which should be greater or equal to j. If n-d-j>O we should add n new
system generated subscripts $1 to Sn, modifying the instance into A(Sn,
... , 31,1j, ... , Il). It should be noted that the new subscripts are
always added on the leftmost dimensions of the array variables.

T! Is Pill in the Subscript Expression List for the Edges.

- 96 -

All the edges except types 3 and 7 have been generated with an
empty subscript expression list. Using the edge type and the dimensions
of its source and target nodes, we generate a subscript expression list
for each edge. Edges of type 3 and 7 have a partial subscript
expression list based on their apparent appearance in the assertion. It

*may be necessary to expand this partial list. If n missing subscripts
have been added to the variables in an assertion, then it is necessary
to add n subscript expressions to the edges which correspond to the
instances of the variables in the assertion.

97

£111 161 NOO SCHOOL OF ELECTRICAL ENSIICERINS PHILADELI IA P-ETC F/S 9/2
NOVEL PROORAN GENERATORS SYSTEM AND PIOUA.SIIN DOCWXIENTATIOM, --ETC (U)
NAY 52 K LU NOO1-76-C-O#15

j ACLASSIFIED O

MEEMEEEEmEE
IIEEEEEEEEEEEE
IIlfflflIIIIflfflf
EEEEEEEEEEEEEE
EEEEEEEEEEEE

IIII Il* IIIII
11114 12.8 1.6

-11111- .251

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

RANGE PWOPAGATION

5.1 INTRODUCTION

The structures of variables are declared in data description
statements. Every variable is considered an array of some dimensions.
The number of elements in an array variable is determined by the
dimensionality of the array and the sizes of each of the array
dimensions. The size of an array dimension is called the range of that
dimension. The range information allows us to allocate memory space for
the array variables and generate iteration control statements which will
define every element in the arrays. The use of subscripts in assertions
makes it possible to define multiple elements of an array through one
assertion. We can instantiate an assertion by fixing its subscript
values. Then every instance of the assertion defines one single data
element. The ranges of the assertion's subscripts restrict the number
of instances of an assertion, which in turn defines the number of times
that the assertion will be executed. The ranges of array dimensions and
assertion subscripts are used in the later phases to synthesize the
pr gram.

Much information is not given explicitly in the specification. For
instance users are allowed in assertions to use free subscripts for
which the range is not specified. Also the range specifications of some
array dimensions may be omitted. Therefore an algorithm is needed to
derive ranges for certain assertion subscripts and array dimensions.

There is yet another reason why we want to analyze the subscript
ranges. A criterion for placing a number of assertions in the scope of
one loop is that they all have subscripts of the same range. From the
point of view of program optimization it is preferred to have the loop
scope as large as possible. It is important therefore to identify the
subscripts of the same range. By propagating the specified range
information to all the assertion subscripts and array dimensions we not
only find the ranges which have been incompletely specified, but also
identify the ranges which are equal.

- so -

5.2 L UGE CONSTRUCTS FOR RANE SPECIFICATION

A multi-dimensional array is declared as a hierarchical data
structure with the most significant dimension specified at the top
level. The range of a dimension may not depend on the subscript value
of les significant dimension. The range of an array dimension may be
specified in NDDEL in several alternate ways as follows:
(1) Through a data description statement. A constant number of

repetitions of a data structure may be specified in the data
description statement which describes the parent structure.

(2) By defining the value of a SIZE qualified control variable (Refer to
section 3.4.). For example, if group X repeats K times and K is a
variable itself, we may use the following assertion to specify its
range:

SIZE.X - K

A SIZE qualified variable is an interim variable of at most one
dimension less than that of the suffix variable. Its value is used
to define the range of the last dimension of the suffix variable
(i.e. X). Consider an N dimensional repeating group X. Assum
that the ranges of all its dimensions except the least significant
one are defined elsewhere. By definition, SIZE.X is at most an *-I
dimensional array and the range of its dimensions is exactly the
same as the range of corresponding dimensions of data structure X.
Since the values in array SIZE.X can be different from one another,
the array X may not have a regular (i.e. rectangular) shape, but
have "jagged edges." This can be stated formally as follows:

X(S ,S ,...,S ,....S) is in X iff
1 2 k n

SIZE.X(S ,...,S) is in SIZE.X &
1 k

1 4- S c- SIZE.X(S ,...,S)
n 1 k

(3) By defining the value of an END qualified control variable. The END
array in of boolean type. It determines the range of the least
significant dimension of the variable named in the suffix. Given an
N dimensional array X, the associated control array END.X has the
same structure as array X. The range of the Nth dimension is
defined as the smallest positive integer Ln which satisfies theI following conditions.

END.X(S ,...,S ,Ln)- TRUE
1 n-l

END.X(S ,...,S ,S)FALSE,
1 n-l n

for 1 S c Ln.
n

'4 - a9 -

(4) By using a subscript declaration statement to define a global
subscript. The constant number of repetition can be specified in

the statement. For examples
I IS SUBSCRIPT (20)

(5) By system default. A repeating data structure which is a rightmost
decendant and which is above or at the record level, may be assigned
the end-of-file as its range if the user does not specify a range
for it.

The mechanisme of SIZE and END arrays are not totally redundant.
There are some essential differences between the SIZE and END arrays.
First, the END array can define a minimum range of one, whereas the SIZE
can define a range of zero. This is because the END array must have at
least one value of boolean true. Secondly, the range specified by SIZE
array is finite. But the range specified by END array may be infinite
(through a user error in the range defining assertion, when there is no
first boolean true condition). This is not checked by the system.
Thirdly, the range specified by array SIZE.X(Il ... ,Ik) may not depend on
the array element X(Il,..,In), while END.X(Il,...,In) may depend on
X(II,...,In). For example, let X(l),...,X(k) be all the instances of an
one dimensional array X whose range is specified by SIZE.X-k. In the
program, the value of SIZE.X, i.e. k, must be computed before we
compute any of the elements of X. If END control array is used, the
range is specified by END.X(l), ... , END.X(k), and we only have to
ensure that END.X(I-I) is computed before X(I) for l<I<k.

5.3 DEFINITIONS

Subscript variables belong to a special class of variables. While
an ordinary variable can assume only a unique value, a subscript
variable can take on a range of positive integer values. Subscript
variables can be used as indices in array element references or in the
same way as ordinary variables to compose complicated expressions. The
meaning of subscripts is the same as their meaning in mathematical
usage.

The following definitions are used in discussing subscripts.

Definition Let X be an N dimensional array represented in the Array
Graph by a node. Let i be a positive integer. The tuple cX,i is
referred to as a node bcrp. It denotes the ith dimension of
the node of array X. Let al be an assertion node, and I a
subscript variable referenced in the assertion al. The tuple
(al,ZI, is referred to as a node subecript for I associated with the
assertion node al. If cn,d, is a node subscript, then R(-cn,d)
denotes its range.

Node subscripts are grouped into r sets. Every range set
contains the node subscripts which have the same range. However no two
dimensions of the same node can be put into one range set even if they
have the same ranges because every range set will later correspond to a

490

FI

level of nested loop. in the generated program and no two dimensions of
the same node can correspond to the same level of nesting loops.

9

Definition The range of a subscript that ham been declared as a 9.IQW
mlbpqr_t is the same in all assertions where it is used. There
can only be one range associated with a global subscript.

Definition The range of a subscript that has not been declared as global
is fixed within the scope of the assertion where it is used. It
will be called a local subscrip. A symbol used as a local
subscript can have different ranges in different assertions.

There are two types of global subscripts in MDEL. One is
specified by use of the qualifying keyword FOREACH in the prefix and a
repeating data structure name in the suffix. The other is explicitly
declared in a subscript declaration statement. (Refer to section
3.3.2.) The FOR-EACH type global subscript always has the range of the
repeating data group named in the suffix associated with it. A user
declared global subscript can have its range specified in the subscript
declaration statement. By using global subscripts in assertions, the
user can specify explicitly the range of assertion subscripts.

Local subscripts are all of the form SUBn where n is a positive
integer. Users do not have to declare local subscripts (in subscript
statement). The use of local subscripts in an assertion is like that of
formal parameters in a function definition. They can be chosen
arbitrarily within the scope of an assertion. This gives the user
freedom to reuse the subscript names in different assertions.

5.4 DISCUSSION OF RANGE PROPAGATION

5.4. 1 CRITERIA FOR RANGE PROPAGATION

In this section we discuss the conditions for propagating the range
of a subscript from one node to another. A node subscript refers to
either an array dimension or an assertion subscript. If two node
subscripts are related through some dependency relation and one of them
does not have an explicit range specification, we propagate the range
from one to the other.

Let us consider first a simple assertion B(I) - A(I) . Three
entities are involved : the source variable A, the target variable B,
and the assertion itself. All of them are one dimensional objects. The
assertion states that the kth instance of the assertion corresponds to
the kth instance of array B for all k in the range of B's dimension.
There is a bijective mapping between the instances of the assertion and
the instances of the array 8. It is therefore very natural to believe
that the range of the target variable 3 is the same as the range of the
assertion. Additionally, from the subscript expression I in the term
A(l) we can derive that the range of the assertion can be taken from the
range of the array A. In short, whenever a simple subscript variable is
used as a subscript expression it strongly suggests that we may

- 91 -

I

propagate the range from one node subscript to another.

When a subscript expression of the form I-k is used in an
assertion, where I is a subscript variable and k is a positive integer,
there exists a one-to-one mapping between values of certain elements
indexed by I and I-k. The mapping may be interpreted in two possible
ways : assume the ranges of the arrays indexed with I and I-k
subscripts are the same, or assume that the variable with the I-k
subscript expression has k instances fewer than the variable with I
subscript. We have decided to adopt the simpler assumption, that is,
the ranges are the same. Therefore we will propagate ranges between the
node subscripts indexed by subscript expression I and I-k.

It should be noted that we do not intend to modify or ignore a user
specified range of a node subscript. The analysis mentioned above is
used for two purposes. One is to derive a range for a node subscript
which does not have an explicitly specified range. Second is to
determine if it is possible to put two node subscripts into the sam
range set when both of them have user specified ranges and the ranges
are the same. When two node subscripts have user specified ranges, we
are interested in finding out whether their ranges are equal. Since
there is no simple way to determine if two functions are equal in
general, we will only check the assertions which define the range arrays
by the other range array.

5.4.2 PRIORITY OF RPHM PROPAGaTION

User specified ranges are associated with repeating data structures
or declared global subscripts. The range specified for a data node is
interpreted a the range of its least significant dimension. Ranges of
node subscripts can be propagated along a path in the Array Graph from
one node to another based on the following relations between respective
node subscripts.

1. The two node subscripts are both global subscripts and have the same
global subscript name.

2. One of the node subscripts corresponds to a dimension of a data node
and the other corresponds to the same dimension number of the
associated oontrol variable.

3. The two node subscripts occur on the corresponding dimensions of two
data nodes in the sm data structure.

4. One node subscript is associated with an assertion node and the
other is associated with a source variable of the assertion.

5. One node subscript is associated with an assertion node and the
other is associated with the target variable of the assertion.

There may be several alternative paths (and directions) for
propagating a range, and the range derived for a node subscript may
depend on the choice of a path. The choice of path may also affect the
efficiency of the generated program. Therefore, we will propagate
ranges according to a priority order which attempts to obtain the
highest efficiency. The priority order is as follows.

- 92-

When a global subscript is used in several assertions, the ranges
of the respective node subscripts (in these assertions) are the same.
We may consider all the node subscripts with the same global subscript
name as a group. Whenever any element in the group has its range
defined, we will propagate the range to other elements in the a
group. This type of propagation will have the top priority.

Next consider the data nodes and their associated control variables
such as SIZE.X, ZND.X, POINTER.X, LEN.X, ... , etc. The dimensions of
the control variables correspond to the dimensions of the variable named
in the suffix from left to right. The corresponding dimensions of a
data node and its associated control variables should have the same
range. Similarly the corresponding dimensions of a data node and its
higher level nodes in a data structure should have the same range.

If the range specification of local subscripts in assertions or
array dimensions are not given explicitly, we will derive them by
analyzing the respective subscript expressions in assertions. It is
preferable to propagate the range from a target variable to an assertion
rather than to propagate the range from a source variable to an
assertion. Therefore, the range propagation between an assertion node
and its target node or between a data node and its associated control
variable will have the second priority.

Globally it is preferred to propagate the range from a variable in
an output file backward to a variable in an input file than reversely.
Thus we will assign the third priority to the propagation from an
assertion node backward to its source variables and the fourth priority
to the propagation from a data node forward to an assertion node in
which it is referenced as a source variable.
ExaMle Let array A be an input file with 20 elements, array C an output

file with 10 elements and array B one dimensional interim array.
The assertions

al: B(I) - AM)
a2: C(I) - B(I)

may lead us to assign either 20 or 10 as the range for array 3,
depending on the point of view taken. As far as the correctness is
concerned, it does not make any difference whether 20 or 10 is used
as the range of array B. But a smaller range would mean potentially
less memory space and less computation time. Therefore the latter
is more desirable. The range may be evaluated as follows. Since no
global subscripts are used here, no propagation corresponding to the
top priority can be achieved. The propagation from an assertion
node to the target variable is second priority, therefore, the range
of C, l) and -cB,1) should be propagated to ca2,I, and ta1,I,
respectively. The range of subscript cB,13) will be that of ch,1) or
4C,1, depends on whether we give higher priority to the propagation

from 4A,1) to a1,1 or from 4a2,I3 to 4B,1). Since the latter has
the higher priority, the range is propagated from array C all the
way back to the assertion node al. (Refer to Fig. 5.1.)

4 - 93-

al: B(I) a AM

a2: C(I) -, B(I) A
A R(<Aj1>)--20

al
I I

B I

%. - B I >)= ?

I 2 e R ca2,I>)-?

C / R(-CC,I>)=10

Fig. 5.1 Example of Range Propagation

In summary, we have divided the range propagation into four
priority levels. The top level is based on use of global subscripts.
The second level is based on the relation between data. node and its
associated control variables or between the assertions and their target
variables. The third level is to propagate the range from an assertion
backward to its source variables, and the fourth one is to propagate the
range from a data array forward to the assertions in which it is
referenced as a source variable.

5.4.3 REAL ARGU3IM OF RANGE FI OCTIOUS

Every node subscript will iterate over its range by a loop control
statement in the generated program. A node in the Array Graph having N
node subscripts associated with it will have an N level nested loop
enclosing it. Every loop controls the iteration of a corresponding node
subscript. We will show that the range specification of the node
subscripts may have influence on the order that the loops can be nested
and on the order of subscripts in referring to a range array.

When the ranges of the dimensions of an array are all constant, the
array has a regular shape. We can access all of the array elements by

-94-

iterating the subscripts in any order. For example, if we have a
rectangular array A, we can access all of the array elements either
raw-wise or column-wise. However, if some of the dimension ranges of an
array are specified by range arrays, it is no longer true that we can
nest the loops e'in any order. in Pig. 5.2(a) two arrays A and B are both
three dimensional arrays. The ranges of the third dimension of both
arrays are specified by the SIZZ.A array. In Fig. 5.2(b), a part of the
flowchart for the specification in 5.2(a) is shown. The point is that
the loop corresponds to node subscript OA,3 .should be scheduled inside
the loops of <A, l> and 4A,2>. Because the loop control statement for
cA,3v references the range array SIZE.A and the value of S1z.A depends
on the values of subscript (Al) and <A,2).

A IS FIED;
B 1S FIELD;
3(Z,J,K) - A(Z,J,K)
SIZE.A(I,J) m f(I,J)

Fig. 5.2(a) A range array with real arguments

DO 4A, 1.;
DO cA,23q
DO cA,3. - I TO SIZE.A(4A, l,cA, 2)

A(4A, 13., 4A,2)., <A, 3>)
B(cA, I-, <A, 2 -, cA,3) - A(-A, 1)., <A, 2 ,cA,3)
B(<A, 1I>, <A, 2)., <A, 3)

EM;D
END;

END;

Fig. 5.2(b) Flowchart of 5.2(a)

A simple solution would be to require that the loops enclosing an
array are nested according to the hierarchical order of the array
dimensions. Thus, the dimension being declared on the top level of the
data structure will be scheduled on the outmost level. Because the
range of a dimension is not allowed to depend on the subscript value of
any lower level dimension in the data structure, in the example above
when the loop of <A,3> is to be scheduled, the loops of cA,l3 and <A,2),
would have been scheduled on the outer levels. However, this
requilremnt is unnecessarily strong. For example, if we follow this
scheme, then all the two dimensional arrays will have to be computed
row-wise. With this restriction we may lose the opportunity to generate

-95-

- -

an optimal program.

A generalized solution would be to treat the range arrays as
functions and find the real arguments of the range functions. For

I example, an N dimensional range array SIZE.X(1,...,In) may be
considered as a function which maps an N tuple of integers I, ... , In

*. to an integer value which is the range of the n+lth dimension of array
I iX. Every subscript of the range array may be viewed as corresponding to

an argument of the function. We will use the terms range array and
* rang function interchangeably. Some of the function arguments may not

affect the function value, namely the range does not vary with the value
of these subscripts. The rest of the arguments which do play roles in
determining the actual value are called real SMeonts of the range
function.

By analyzing the assertion which defines a range array, we can find
all the real argumnts of the range array. If the range of a node
subscript gn, d• is specified by a range array and the range array has
some real arguments, the real arguments of the range array should
correspond to some other node subscripts of node n. In the generated
program the loops which correspond to the real arguments should be
scheduled on the outside level of the loop which corresponds to the node
subscript <n, d•. For example, consider the specification in
Fig. 5.2(a). The range array SIZE.A has two real arguments, i.e.
(SIZE.A,I and 4SIZE.A,22. Since the node subscript cA,3. references
the range array SIZE.A and the node subscripts cA,l3 and cA,2>
correspond to <SIZE.A,b> and CSIZE.A,2> respectively, node subscripts
<A,1). and 4A,2) will be stored in the real argument list of node
subscript 4A,3>. It is shown in Fig. 5.3. The loop iterated on cA,l>
and cA,22 will be scheduled on the outside of the loop on cA,3,.
Similarly, we can find the real argument lists for cal,K and cB,33.

-96-

SI .A cSIZE.A,1R-cSIZE.A,2

A

<A , > A2>
iA , 5

A9

*<al ,J5

2BI <B,2> cB,3>H H

<BI

Fig. 5.3 Real argument lists of node subscripts

Zxample We will show how transposing an array effects the mapping
between the real arguments of the range arays. Let us examine the
following assertions.

B(I,J,K) - A(J,I,K)
SIW.A(MN,) - h(M,N)

Assuming that R(cA,13,) in equal to R(cB,2,) and R(cA,22) is equal to
R(cB,12). The range for subscript <8,3) is obtained from R(CA,3))
which is given by SIZE.A. SIZE.B(N,K) should be equal to
SIZZ.A(M,N). All we need is a permutation of subscripts to make the
range array SIZE.A the same as SIZE.B. A possible flowchart for the
loops enclosing node A and B is shown in Fig. S.4.

- - 97-

DO 4A, l)
DO -cA, 2> ;

DO AO,2>

DO cA,33- 1 TO SIZE.A(4Al),<A,2) ;

EDD
EDD

EDD

IDO -c 1 ;

B(B,OcB,2.,cB,3) ;

EDD
EDD

Fig. 5.4 Transposition of real arguments of

a range array

It should be noted that the order of the node subscripts cB,l> and <B,2>
in the range array reference SIZE.A(<B,2>,cB,1) is significant in the
loop control statement for <8,3>. Therefore, in the real argument list
associated with the node subscript <B,3) we should store the real
arguments in the order of cB,2> followed by <B,1,. (Refer to Fig. 5.5)

- 96 -

SI .A <SIZE.A,. <SIZ.A,2>

\ / <A,1>

/x <A,2>

al. <a' <a~> <al,K>4 I

<al ,J>

I <al,
I ~ I

.B <B<><,2 <3,

Fig. 5.5 The order of real arguments in the
real argument list

I 5. 5 RANGE PROPAGATION AWORITHM (RNGPROP)

The range propagation algorithm consists of three steps. First of
all, we locate the node subscripts which have user specified
ranges (Algorithm 5.1). In the second step we propagate the explicit
range specifications by partitioning the node subscript set into range
sets (Algorithm 5.2). In the third step, we will propagate the real
argument list(RAL) among the node subscripts in the same range
set (Algorithm 5.3).

- 99 -

The data structure used are as follows. The total number of node
subscripts in denoted by $ALLSUDS. Every node subscript is assigned a
unique sequence number. A vector TER(DICTIND) of integer denotes the
kind of range specification used for the least significant dimension of
each node. It can have the values of 1-4 to denote the following
conditions:

1: the data structure has a constant number of repetition.
2: the range is specified by an EDD array.
3: the range is specified by a SIZE array.
4: the range is implied by reading an end of file.

The vector LTERMC provides the same information for node subscripts as
TEME for the nodes. The contents of TERMC and LTERMC are computed by
Algorithm 5.1.
Alorithm 5.1 Find User §_ecified Ranges
Output:
TERI: The type of user specified range of every node in the Array

Graph.
LTEMC: The type of user specified range of every node subscript.
1. Initialize the vectors TEMC and LTEMC to 0.
2. For each node n, in turn do:

If attribute VARYREP-O, then TERC-1.
If attribute ENDB>O, then TERMC-2.
If attribute SIZEB>O, then TERMC-3.

3. For every node n, in turn do:
If TERMC(n) is not equal zero, find the node subscript <n,d) which
corresponds to the least significant dimension of node n. Set the
LTERMC entry of the node subscript to TERMC(n).

Three arrays, HEADER, SETNEXT, and LPANGEP are used in step 2.
Each of them has SALLSUBS number of entries. HEADER(I) gives the
sequence number of the header element of the block to which the Ith node
subscript belongs. SETNEXT(I) links the Ith node subscript to the next
node subscript in the same block, if any. When the Ith node subscript
is the header of a block, then LRAMGEP(I) shows the range of the Ith
subscript. Algorithm 5.2 partitions the set of all the node subscripts.
Initially every node subscript forms a block by itself. Then whenever
we find that two node subscripts could have the same range and no range
conflict would occur, we will merge their blocks. This merging process
will continue until no further merging can be done. Since every node
subscript can only be in one block at any moment, this is in fact a
disjoint-set union problem[AHU 74]. The blocks formed in Algorithm 5.2
are called range sets.
Alorithm 5.2 Propa ation of Range Specification
Input:
L ERiC The type of user specified range for every node subscript.
Output:
RAGZE: A field in the LOCAL_SUB data structure of every node subscript.

It contains the range set number where the node subscript
belongs.

SENGSET: The total number of range sets.
SETSRNG: The node number of the header of a range set.
Data structures:
$ALLSIJDSt The total number of node subscripts.
HEADER($AL-SUBS): The node number of the header of the range set of a

node subscript.

-100-

SETWEXT(SALLSUBS): For every node subscript, it points to the next node
subscript of the same range set.

LRANGEP(SALLSUBS): If a node subscript is not the header of any range
set, the value is -1. Else, if the node subscript has a user
specified range, the value is the data node number of the range.
Otherwise, the value is 0.

1. Initialization.
Make every node subscript a block by itself. For all values of I
from I to $ALLSUBS do:

HEADER(I)-I,
SETNEXT(I)=O, /* NO NEXT ELMENT *
LRANGEP(I)wnode of the range /* IF IT HAS A DEFINED RANGE */

-0, /- OTHERWISE */
2. Merge blocks of the same global subscript name:

For every node subscript with sequence number I, check whether it has
a global subscript name. If it is a global subscript of the form
FOREACH.X or user declared subscript X, let J be the sequence number

-* of the node subscript which is associated with the least significant
dimension of node X. Call procedure UNION(I,J) to merge the blocks
containing these two subscripts.

3. Propagate ranges between data nodes and control arrays
or target nodes and assertion nodes:
For every edge in the Array Graph with edge type not equal to 3 check
the type of the subscript expressions associated with the edge.
These edges connect data arrays to the associated control arrays and
the assertion nodes to their target variables. For every subscript
of the source node, find the corresponding subscript in the target
node. If the APRI_NDE of the subscript expression is 1 or 2, merge
them using procedure UNION.

4. Propagate ranges from assertion to source variable:
Scan all the edges of type 3 which connect a source variable to an
assertion. The range is to be propagated backwardly. If the
subscript of the source node has a defined range, no merge will be
done. Otherwise check if the APR_NDE of the subscript expression is
1 or 2. If yes, call procedure UNION to merge it with the
corresponding subscript of the target node.

5. The same as step 4. Except that no merge will be done if the
subscript of the target node has a defined range.

6. Check the header of each block. If it does not have a user defined
range, check the elements of the block. If there exists an element
which is associated with a data node at or above record level and
being the rightmost node in an input file structure, we may use
end-of-file as the default range.

7. Assign a rane set number to every block of the partition. If a node
subscript belongs to the kth block, put k into the RANGE field in the
data structure LOCALSUB of the node subscript. Also store the node
number which gives the range information of the block in SETSRNG(k)
entry.

Procedure UNION(I. J)
Input:
I, J: The subscript sequence numbers of two node subscripts for which

the range sets will be merged.
Output:

Modify the data structure HEADER, SETEXT, and LRANGE to reflect
the merging of the two range sets.

- 101-

IJ

1. If both subscripts I and J are in the same block, exit.
2. If the blocks containing subscript I and J have different ranges,

exit.
3. Put HEADER(I) into A.
4. Put HEADER(J) into B.
5. Change the HEADER entries of all the elements in the same block as J

to A.
6. Append the list with the header B to the list with the header A.
7. Replace LRANG P(A) by LRANGEP(B) if LRANGE(A)-O.
8. Set LRNE(B) to -1.

Step three examines all the range sets. If the range of a range
set is specified by a range array, a RAL is computed for every node
subscript in the range set.
Algorithm 5.3. PKoaation of Real Argument List

Input:
LTENV: Type of user specified range of every node subscript.
RANGE: A field in the UOCAL.SUB data structure of every node subscript.

It contains the range set number where the node subscript
belongs.

Output:
RALP: A field in the data structure LOCALSUB of every node subscript.

For every node subscript whose range is of types 2, 3, or 4, it
points to a list of real arguments of the range function.

Data structure:
The real argument list pointed to by RAL consists of a list of
elements which are stored in the data structure RAL. The fields
in the RAL are as follows.

SRAL: The number of real arguments.
RSPOS(SRAL): The subscript position of a real argument in the range

array.
MSPOS(SRL): The subscript position of the corresponding real argument

in the node subscript list.
1. For each node subscript which has a user specified range and the

termination criterion is not constant, form the RAL for it and put it
into a candidate queue. (Refer to Algorithm 5.4)

2. Iterate step 3 to step 7 until the candidate queue becomes empty.
3. Get a node subscript from the queue. Let it be the subscript S of

node X. Propagate the RAL of S to other node subscripts in step 4,
5, 6, and 7. If any node subscript gets its RAL newly defined, put
it into the candidate queue such that its RAL can be propagated to
other subscripts.

4. For each outgoing edge from node X, propagate the RAL of subscript S
from node X to the target node. (Refer to Algorithm 5.S)

5. For each incoming edge into node X, propagate the RAL of subscript S
from node X back to the source node. (Refer to Algorithm S.6)

6. If subscript S references a global subscript, propagate its RRL to
the global subscript.

7. If subscript S is a global subscript, then propagate its PAL to all
the subscripts which reference its name.

S. Stop.
&_gorithm 5.4. Find RAL from a rane specifyinq assertion

Suppose the range of the subscript cX, n) is specified by an
assertion. Let the range array be SI .X or END.X. The algorithm tries

- 102 -

to find the RAL for subscript cX,no.
1. Put all the subscripts of the target variable of the assertion which

defines the control variable SIZZ.X or END.X into a list.
2. If the target variable is END.X, delete the subscript on its least

significant dimension from the list.
3. Repeat for each of the subscripts in the RAL to check whether it is

referenced on the right hand side. If yes, it is a Real Argument.
Otherwise, delete it from the list.

4. The resulted list is the RAL of the subscript cX,n,.
Algorithm 5.5. Propagation of RAL forward along Aq e

Assume S1 is a subscript of node X and there is an edge E from node
X to node Y. The algorithm propagates the RAL of Sl to some subscript
of node Y.

1. If the subscript expression of Sl is not type 1 or type 2, exit.
2. Let the corresponding subscript of node Y be S2. If RAL of S2 is

defined, exit.
3. If the ranges of Sl and S2 are different, exit.
4. For each subscript in the RAL of 5l, check its subscript expression

type. If any one of them is not type 1, exit. Find their
corresponding subscripts in node Y and form a new list. If the
ranges of the corresponding subscripts are not the same, exit.

5. The newly formed subscript list is the HAL of S2.
AlQorithm .. Propagation of RL backward alon- an efte

Assume S1 is a subscript of node X and there is an edge E from node
Y to node X. The algorithm propagates the RAL of S1 to some subscript
of node Y.
1. If there is no subscript of node Y corresponding to subscript S1,

exit.
2. Let the corresponding subscript of node Y be S2. If MAL of S2 is

defined, exit.
3. If the ranges of Si and S2 are different, exit.
4. For every subscript Xi in the RAL of Sl find its corresponding

subscript Yj of node Y.
4.1 Let the subscript position of Xi in the local subscript list of

node X be i.
4.2 Check the LOCAL_SUBS field in the data structure EDGE_SUDL

associated with edge E. If the jth WOCALSUBS is equal to i, the
jth node subscript Yj in the local subscript list of node Y
corresponds to Xi.

4.3 Check the APR..NODE corresponding to subscript YJ in edge E. if
it is not 1, exit.

4.4 Check the RANGE field of the node subscript YJ and that of
subscript Xi. if they are different, exit.

5. Form a subscript list which contains those subscripts Yj's of node Y.
It is the RAL of subscript S2.

Alaorithm 5 Propagate RAL between Global subscripts

Suppose subscript S1 of node X and subscript S2 of node Y have the
same global subscript name. The algorithm propagates the RAL of S1 to
S2.
1. If the MAL of S2 is defined, exit.
2. For each subscript T in the RAL of S, get its range, say RT. Check

- 103 -

.. . . ,- n

all the subscripts of node Y. If there is one and only one subscript
jU which has the same range as subscript T, then subscript U is the

corresponding subscript of T. Otherwise, exit.
3. Form a subscript list which contains those subscripts U's of node Y.

It is the RRL of 52.

5.6 DAA DEPENDEICT OF RAMCZ INFORMATION

In section 4.4.2 we have mentioned that range arrays cause implicit
data dependency relationship. The edges of type 13 and 14 in the Array
Graph represent this type of data dependency. However, it is not enough
if we only have the edges from a range array SIZE.X or DID.X to the node
X. For every node in the Array Graph, no matter whether it is a data or
an assertion node, as long as one of its node subscripts is in a range
set where the range is doined by a range array, an edge should be drawn
from the range array to that node.

We can tell the range of every node subscript only after the range
propagation phase. Therefore, the correct time to add this type of data
dependency relationship is after we have found all the range sets. If a
range set has a range array as its range specification, then there will
be edges emanating from the range array and terminating at every node in
the range set. Subscript expreseions of type 1 are associated with the
edges emanating from a SIZE range array. Subscript expression of type 2
is associated with the least significant dimension of an END range array
and type 1 subscript expressions are associated with the other
dimensions of the END range array.

-104-

-M moo"

CHAP'ER 6

SCHEDULING

6.1 OVEWV'IEW OF SCHEDULING

Through the phases of, data dependency analysis, dimension
propagation, and range propagation we have analyzed the user' s
specification and checked the consistency and completeness of the
specification. In a non-procedural programming language, the execution
sequence is not specified in the program specification. The objective
in this chapter is to determine the order of execution in performing the
specified computation. We have collected the needed information in the
convenient form of the Array Graph. The Array Graph contains all the
program activities as nodes and the data dependency relationships as
edges. The next step toward constructing a program is ordering the
program activities represented by the nodes of the Array Graph under the
constraints posed by: a) the edges of the Array Graph, and b)
considerations of computation efficiency. As stated in chapter 1,
efficient scheduling is one of the main contributions of the reported
research. This method of synthesizing the program is called schedulino
here. It is followed by the actual program code generation.

Two rules which are frequently accepted in programing, except in
cases where memory limitations are extremely severe, will be followed
here as well. The first is that every input file is to be read only
once. This rule will reduce the number of input activities which are
usually relatively slow. If necessary we may store the input data in
the mory for repetitive use. However, sometimes the memory price may
be very high due to the large capacity of external storage. The second
rule is that no values are to be recomputed. This means that once an
element has been computed it will be retained as long as it is needed
for later reference.

- 105 -

6.1.1 & BASIC APPRACH TO SCHEDULING

A correct but often inefficient realization of a computation can be
obtained through the following scheduling method. Our eventual approach
will be partly based on this simpler basic approach. The acyclic
portions of an Array Graph may be scheduled very simply as follows. A
topological sort algorithm can be applied to obtain a linear ordering of
the nodes in the graph in accordance with the edge constraints.
Multi-dimensional nodes are then enclosed within nested loop controls.
Every loop iterates the respective node over the instances of one of the
distinctive node subscripts of the node.

When there are cycles in the Array Graph, a topological sort will
not succeed. Superficially, a cycle in the Array Graph means a circular
definition which does not allow us to determine a linear order for the
computation. Actually since the Array Graph masks some of the details
of the relationships in the corresponding Underlying Graph (see Chapter
4), there may be a cycle in the Array Graph where there are no cycles in
the corresponding Underlying Graph. Also iterative solution methods can
be applied to perform the computations even where there are cycles in
the Underlying Graph. We have to apply a deeper analysis of the nodes
and subscript expressions used in assertions in the cycle. The cycles
that are found to be really not circular can be resolved to generate a
linear schedule. The method employed is briefly described as follows.
The Array Graph is decomposed into subgraphs. Each subgraph is a most
strongly connected component (M5CC). A MSCC in a directed graph is a
maximal subgraph in which there is a path from any node to any other
node. The deeper analysis is then applied to the NSCC components in the
Array Graph. The analysis described in section 6.2 consists of search
of a dimension that is common to all the nodes in the 3SCC. If an edge
is found in the 3SCC which has an I-k type subscript expression
associated with it, the edge may be deleted. This sometimes results in
an acyclic subgraph which can be topologically sorted. If this method
is not successful then other analysis methods, or alternatively an
iterative solution method may be applied.

6.1.2 EFFICIIT SCHEDULING

In general, a schedule which satisfies the constraint of the data
dependency relationship is not unique, if one exists. Therefore, there
is a degree of freedom to select a schedule which meets efficiency
requirements as well. We want to have a schedule with the fewest number
of loops or with the least amount of working storage for the program
variables. Although we will use here the results of the basic
scheduling approach mentioned above, our method of scheduling consists
essentially of a process of repeated merging of basic MSCCs in the Array
Graph. As will be shown, in this way we can reduce the use of memory
and computation time.

Non-procedural programming uses as many variables as the values
that occur during the program computation. if we simply allocate
separate memory space to each variable, as may be done in the basic

106

approach, we will most probably get a program which uses a large amount

of memory space and in some cases may not be executable. Therefore, we
are here primarily concerned with memory efficiency of the program. Our
aproach is to examine the effect on use of memory due to merging of
blocks of nodes of the same or related subscript ranges and form
iteration loops for the selected subscripts enclosing the merged blocks.

We will select mergers of blocks of nodes which reduces the use of
memory the most.

In some cases we have an alternative of maximizing the scope of one
loop at the cost of reducing the scope of one or more other loops. The

choice of which loop scopes are maximized is based on comparison of
memory requirements of the alternatives. The alternative that requires
least memory space for program variables will be selected.

The repetitions indicated by the node subscripts are controlled by

loop statements. The execution of loop statements takes some CPU time.

If the loop scopes in a program are small, i.e. if they contain fewer
nodes, then there will be more loops in the program and the overhead
spent on the loop control statements will be increased. This is another
reason why it is desirable to maximize the loop scopes in the generated

programs.

6.1.3 OUTLINE OF TIM CHAPTER

The material in sections 6.2, 6.3, and 6.4 form a background to
understanding the optimization in the scheduling algorithm. In section
6.2 we will discuss the analysis of ISCCs. The algorithm of our
optimizing scheduler is based on deeper analysis of cycles. A similar

approach was used previously in an earlier version of the "DDEL
processor. Some changes discovered in the course of the presently
reported research have been added. The merger of components is
discussed in section 6.3. There are two bases for merging of

components: when components have the same subscript ranges and when
they have related range (this is explained later). In section 6.4 we
will introduce the memory penalty concept which will be used to evaluate
the use of memory in a partially designed schedule. The memory penalty
is the memory cost associated with a candidate subschedule. The
scheduling algorithm is presented in section 6.5.

6.2 ANALYSIS OF MSCC

-107-

I

6.2.1 CYCLES IN THE ARRAY GRAPH

A cycle in the Array Graph means that a variable definition depends
directly or indirectly on itself. An Array Graph is a compact

*representation of an Underlying Graph. It does not show the details of
precedence relationships in the underlying Graph. Therefore, the
apparent circularity may be deceptive and not be reflected in the
Underlying Graph. In this case a correct computation may be realized
for an Array Graph cycle.

Consider for example the assertion in rig. 6.1 which defines the
factorial function. Because of the recursive definition there is a
cycle in the Array Graph. But there is no cycle of precedence
relationship in the corresponding Underlying Graph. Therefore, there
exists a precedence ordered sequence for computing all the factorial
values.

a(I): F(I) = IF I:1 THEN 1 ELSE I*F(I-) ;

(a) Assertion

a a(1)] (2) C)

I-1 i

F r() (2) I I Ij7
(b) Arra, Gra-h (c) Underlying Graph

Pig. 6.1 Example of cycles in the Array Graph

A DCC in the Array Graph may or may not represent a circular
definition. If it is not truly circular, we may be able to perform the
respective computation by using an iteration loop. In section 6.2.2 we
will discuss the conditions under which a M6CC can be enclosed in a
loop. If these conditions are met, we will find the loop parameter to
bracket the entire M6CC. Once such loop in found, since the loop
indices are ascending, the precedence relationships between the
respective loop instances is assured. Therefore, as shown in section
6.2.3 we delete edges with I-k subscript expressions and the w68CC may be

- 108 -

decomposed. If the above method fails, there are other approaches to
schedule a 15CC which will be discussed in section 6.2.4.

6.2.2 ENCLOSING A 1SCC WITHIN A LOOP

The objective of iterative computations of a single data or an
assertion node is to define all the elements corresponding to the values
of node subscripts associated with the node. In general, the values of
every node subscript can be stepped independently of other node
subscript values. Therefore, a node with N node subscripts would have
an N level nested loops enclosing it, and each level of the nested loop
corresponds to one distinctive node subscript. We will associate with
every loop a loop variable with values which are stepped up by one from
one to the upper bound of a subscript range. All the nodes inside the
scope of a loop will be executed once for every possible value of the
loop variable. Generally if a node does not have a node subscript
corresponding to a loop variable, the repetition would be redundant. We
want to treat an entire MSCC in some manner as a single node, i.e. to
compute all the elements of the nodes in the MCC iteratively. We
require however that all the nodes of a 1SCC have a node subscript with
which a loop brackets the MSCC. If one of the nodes does not have such
a node subscript then the activity represented by the node, such as
input/output, may be repeated, which will cause an erroneous
computation. All the distinguished dimensions must then have the same
range. It should be noted that the loop variable is stepped up each
iteration by one, and no computation of a loop instance can depend on
any computations in later loop instances.

Given a MCC in the Array Graph, we will first check if all the
nodes in the MSCC have more than zero dimensions. If every node does
have at least one dimension to schedule, we will then check the
subscript expressions on the edges of the MSCC to see if the entire 1SCC
can be enclosed within a loop. The edges in the Array Graph represent
relationships between some elements of the nodes at the ends of the
edges. The subscript expressions associated with edges reveal more
precisely the precedence relationships between specific elements. In
the following we examine the subscript expressions associated with an
edge to determine if the nodes at the end of the edge can be scheduled
within the scope of a loop.

Definition Let A be a node of n dimensions. Then A denotes the set of
all the instances of node A, i.e. A - (A(I1,...,In)
I4-Ikc-R(<A,k), for c-k<n }.

Definition Let A be a node of n dimensions. Then A(Ii-Cl; Ij-C2; ...)

denotes the set of all the instances of node A with the ith
subscript Ii being Cl and the jth subscript Ij being C2, ... etc.

Consider an edge from node (Jl,...,Jm) to node 3(Ii,...,In) in the
Array Graph 2

where J's and I's are the node subscripts of node A and B respectively,

-109-

and E's are the subscripting expressions of A. Consider the subscript
expressions of types 1, 2, 3, and 4.
1) If a subscript expression Ep is of type 1 and equals to 1k, then

every element in _(rk-c) depends only on the elements in A(Jp-c).
Since 1(Ik-c) does not depend on any element in _(Jp-d) with d c, the
Underlying Graph dependencies are satisfied if node A, followed by B,
are bracketed by a loop where the parameters of the iteration are the
pth dimension of A and the kth dimension of B. These are referred to
as a distinguished dimension of A or of B.

2) If the subscript expression Ep is type 2 or 3 and equals to 1k-a,
then for any positive integer c every element in !(1k-c) depends only
on the elements in _(Jp-c-a). Since the parameters of the bracketing
loops are in ascending order (in step of 1) then this assures that
A(Jpmd) is computed before _(1k-c) with dcc. Thus it is allowed to
schedule node A and B into one loop, with 1k and Jp the distinguished
dimensions.

3) If the subscript expression Ep is type 4, then for any positive
integers c and d every element in B(1k-c) may depend on elements in
A(Jp-d). We will be conservative and assume that every element in
_(Ik-c) depends on at least one element in A(Jp-d) with d4 c.
Therefore, it is impossible to designate the pth dimension of A and
the kth dimension of B as the distinguished dimensions for a loop.

Example Given an assertion al as follows. Let A and B be square arrays.
There is an edge frou array node A to assertion node al.

al(I,J): B(I,J) - A(g,J);
where g is a type 4 subscript.

Consider the node set (A,al). Consider scheduling this set into
one loop with <A,l> and cal,I> as their distinguished dimensions.
Let SA be (A(JI,J2)JI-2) and SB be (al(I,J)jI=l). SB is in the
first instance of the loop and SA is in the second instance of the
loop, therefore SB precedes SA. Consider next the element al(1,2)
of SB. We can find an element A(2,2) in SA which precedes ai(1,2)
because of the type 4 subscript on cA,l3 dimension. SB and SA then
precede each other, in the Underlying Graph, and therefore can not
be scheduled.

Exany Given the assertion a2 below.

a2(I,J): Y(I,J) - X(I,J) + X(J,I);

X is a square array and subscripts <X,l,, 'a2,1), and (a2,J have
the same range. We want to schedule the node set (X,a21 in one
loop with 4X,l> and ca2,I. as the distinguished dimensions.
All the subscript expressions being used with node X are not type
4. Bowever, in the term X(J,I) a subscript J occurs on the
distinguished dimension of X, i.e. cX,l>. Since ca2,J3 does not
correspond to the distinguished dimension of node &2, it may be
scheduled in an inner level loop and iterates faster than ca2,1),
therefore some array elements of X will be referenced before
defined. Thus we should not form a loop with these designated
distinguished dimensions.

from the examples above we know that the subscript expression on the

-110-

distinguished dimension of a node must not be a general expression and
it should correspond to the distinguished dimension of another node in
the same loop, otherwise the loop can not be formed. Since the loop
instances are strictly running upward starting from one and all the
subscript expressions on the distinguished dimensions are of the form I
or I-k, no reference goes to the later loop instances, therefore, no
data dependency relationship is violated. In fact, by constructing the
loop we have divided the whole computation into many smaller tasks where
every task corresponds to a loop instance. It should be noticed that
the formation of an outer loop does not exclude the possibility that the
original computation involves an unsolvable cycle. What we are assured
is that the outer loop divides the original problem into smaller ones
and which can be solved easier.

6.2.3 DECOMPOSING A MCC THIROUGH DELETION OF EDGES

Consider now the case where an 1SCC is scheduled in one loop based
on the tests described in the previous subsection. The nodes in the
MSCC have each a distinguished dimension which corresponds to the loop
variable. Also the subscript expressions associated with the
distinguished dimensions are of the form either I or I-k. We will show
in the following that where the parameter of the loop is stepped up from
one by a step of one then edges which have a subscript expression of
type 2, i.e. I-k, are superfluous and can be removed.

Consider an edge of the form B(.... I,...) - A(...,I-k,...) where
I-k and I occur on the pth and the qth dimension of nodes A and B,
respectively. If node A and B are scheduled in the loop of I, then the
elements in A(JpmI-k) have been evaluated in the I-kth loop instance and
the elements in !(Iq-I) are evaluated in the Ith loop instance. Since
the values of loop variables are ascending, therefore every element of
A(Jp-I-k) precedes all the elements of P(Iq-I). This Implies that the
precedence relation represented by the above edge is superflous as it is
enforced by the order of evaluation of the respective elements. In
short, when two nodes are scheduled in a loop of loop variable I, the
precedence relationship presented by subscript expression I-k is
subsumed by the order of loop execution. This is illustrated in
Fig. 6.2, showing the Array Graph of a Factorial function which is
defined with recursion. The recursion causes a cycle of two nodes (al,
FAC).

4 - 111-

al: FAC(I) IF I=1 THEN 1 ELSE I*FAC(I - 1) ;

D01
* DO I

al (<al,I>) al

3 (1-!) 7 () 7

Fig. 6.2 Remove I-k edges in a loop

These two nodes can be scheduled in a loop iterating over node
subscript cal,I>. The kth instance of the assertion al is evaluated in
the kth loop instance and it references the k-lth instance of the array
FACT, which has been evaluated previously in the k-lth loop instance.
Therefore the edge associated with subscript expression I-i can be
removed. There is no further a cycle in the Array Graph.

6.2.4 OTHER APPROACHES TO DECOMPOSING AN 3SCC

There are a number of methods for scheduling a MSCC in an Array
Graph. We have been primarily interested in the cases that a cycle can
be implemented by a loop with the parameter that runs upward from one.
However, not all the cycles can be implemented with this simple loop
mechanism. Thus if the above approach fails it will be necessary to
apply other methods. Consider first the case where the array elements
may be evaluated in a sequence which does not follow the natural
ascending order of subscripts. Consider for example the following
specification which defines A, a vector of 50 elements.

Example
A(I) - IF 1-25 THEN X

ELSE IF 125 THEN A(I+2)+X
ELSE A(I-l)+A(I-2S)

- 112 -

.!.

A possible PWI program to compute array A is as follows.
A(25) X ;
DO I 23 TO 1 BY -2

A(I) = A(I+2)+X

A(26) - A(25)+A(l)
DO 1= 24 TO 2 BY -2;

A(I) - A(I+2)+X
END;
DO 1 27 TO 50

A(I) = A(I-I)+A(I-25) ;
END;

When the subscript expressions are first order polynomials, we can
divide an array nodes into many parts and compute the parts of the array
separately (SHAS 78].

A cycle in the Array Graph may also be considered as a set of
simultaneous equations and numerical methods such as Jacobi and
Gauss-Seidel iterations can be applied to solve the system of equations
[GREB 81]. Since splitting nodes in the Array Graph, as suggested by
Shastry, is complicated to apply, the MSCCs which can not be decomposed
may be treated similar to simultaneous equations and solved iteratively.
In this dissertation we will refer only to the cases that a MSCC can be
decomposed as described above. The other methods are described in the
references.

6.2.5 A SIMPLE SCHEDULING ALGORITHM

The methods of scheduling an HSCC in a loop and attempting to
decompose a 1SCC may have to be applied repeatedly, depending on the
outcome of each application. This section describes a simple scheduling
algorithm which incorporates repeated application of the methods
described earlier. It generates a correct schedule based on an Array
Graph. However it does not include the consideration of program
efficiency.

* The algorithm consists of two mutually recursive procedures,
SCHEDULE_GRAPH and SCHEDULE_COMPONENT. Given any Array Graph as input,
SCHEDULE_GRAPH procedure finds the MSCCs in the Array Graph. The MSCCs

are then sorted into a sequence (Ml,M2,...,.n) which retains the partial
3 order of the precedence relationships between the MSCCs.

SCHDULE_COMPONENT procedure then schedules each component separately.
If Si is the schedule of component Mi, the sequence (Sl,S2,...Sn) is
returned as the schedule of the original graph.

The input to procedure SCHEDULECOMPONENT is an XSCC, say Mi. If
Mi is a single node component and there is no unscheduled node subscript
associated with it, the node itself is returned as the schedule of the
component. Otherwise, the component may be schedulable in a loop. The
procedure tries to find a loop variable which satisfies the requirements
discussed in the previous section. If a loop variable is found, say I,

- 113 -

it then deletes the edges in component Mi with subscript expression I-k
and marks the distinguished dimensions of the nodes in Mi as scheduled.
Let ' denote the resulting graph. Then it calls the procedure
SCHIJLE_GRAPH to produce a schedule for the graph Mi'. After
SCHEDULE.GRAPH returns the schedule of Mi', a loop with loop variable I
and loop body, the schedule of Mi' is formed by SCHEDULECOMPONENT and
returned as the schedule of Mi. If no loop variable can be found,
SCHEDULE_COMPOENT sends a warning message to the user and calls the
procedures described in section 6.2.4 to decompose the 1SCC.

6.3 MZGER OF COMPONENTS TO ATTAIN HIGHER EFFICIENCY

The basic scheduling algorithm, described above, consists
essentially of topological sorting of the nodes or MSCCs in the Array
Graph and of the enclosing of these entities within the scope of nested
loops for the respective dimensions. In contrast, the scheduling
algorithm offered here considers the Array Graph globally and
progressively merges components into the scope of a selected loop which
reduces the most the use of memory and computing time. The scope of the
loops in the schedule is thus progressively enlarged.

Given an Array Graph as input, we can construct a component graph
where every 1SCC is a component node and an edge is drawn from component
A to component B if and only if there exists an edge in the original
Array Graph which leads from a node in the component A to a node in the
component B. The component graph is an acyclic graph. Note that the
MSCCs in an Array Graph are not further divisible. The merger process
starts with the NSCCs in the Array Graph as the basic components, and
through merger it creates larger components progressively. A loop scope
can be the union of some MSCCs. In this section we will discuss the
merging of MSCCs in an Array Graph into the scope of one loop.

6.3.1 MERGER OF COMPONENTS WITH THE SAME RANGE

The condition for scheduling a set of component in one loop is that
every component in the scope of a loop have a distin uished dimension
corresponding to the loop variable. There are several condition on
designating distinguished dimension of a node in an Array Graph or a
Component Graph. First the distinguished dimensions of the components
must be in the same range set and have a common range which specifies
the number of iterations of the loop. The loop variable is stepped up
by one in successive iterations. Therefore also the order of execution
of elements of each component will be evaluated in this order. The
second condition is that an evaluation of each instance of a component
in a loop instance should not refer to values computed in later loop
instances.

Further, components to be merged into the scope of a loop may not
depend on any other component which does not have a distinguished

-114-

dimension and which in turn depends on one of the components to be
merged. The rule is that a set of components which can be scheduled in
one loop should be equal to its closure. The closure of a set of
components includes all the components which are reachable from any
component in the set and which also reach any component in the set. For
example, consider the component graph in Pig. 6.3. The components Cl,
C2, and C4 have a common dimension I. Still they can not be merged into
the scope of a loop with the loop variable I. The closure of the set of
components (Cl, C2, C4) includes component C3. Since C3 does not
iterate with subscript I, it can not be scheduled in the loop of I.
Component C4 can be scheduled only after component C3. Therefore, at
most we can merge components Cl and C2 or C2 and C4 into the scope of a
loop.

C1

7he set The closurej Of the set

C2 IC3

C!4 T

Fig. 6.3 Closure of a set of components

' I The search and selection of a distinguished dimension for each
component in a set is similar to the analysis of subscript expressions
in MSCCs described in section 6.2. We showed there that the subscript
expressions associated with edges terminating at a component can not be
type 4 and that subscript expressions associated with the edge should
connect the distinguished dimensions of the components at the ends of
the edge.

t - 115 -

.4E

6.3.2 MER OF COMPENTS WITH SUBLINEARLY RELATED RANGE

- t In the previous subsection, we considered merging components with

* distinguished dimensions which have exactly the same range as the loop
variable. Every node is then executed once in each loop instance.

There is a large class of cases where subscript expressions are
explicitly related, i.e. where we use an indirect subscript X(I) and X
is a function of I. Statements with such an indirect subscript may in
some case be conditionally executed in the scope of a loop for the
parameter I. We will require that the indirect subscript expression
X(I) have values which grow monotonically and slower than that of the
loop variable I. This feature of sublinearity was already mentioned in
section 4.4.2. As explained in (PNPR 80], use of indirect sublinear
subscript is important in many instances, such as selecting a subset of
records from a sequential file or merging two sequential files into one.

In section 4.4.2 we have discussed the criterion for recognizing a
vector which can be used for indirect indexing. The values of elements
of an indirect indexing vector grow slower than the subscript value of
the elements. The range of its dimension will be called here the major
range, while the range of its content will be called subrange relative
to the major range. For example, the variable X in Fig. 6.4 satisfies
these criteria. X is used in the subscript expression of the first
dimension of node A and therefore R(,cX,i>) is a major range and R(,A,Il)
is a subrange relative to R(<X,1>).

X(I) - If 1=1 THEN 1
ELSE IF (condition is true) THEN X(I-l)+l

ELSE X(I-l) ;

B(I) = A(X(I))

Fig. 6.4 Example of indirect sublinear indexing
in subscript expression

A subrange relative to a major range may be the major range of some
other subranges. Therefore, the sublinear relationship between the
ranges may form a tree with the maximal major range at the root. We
merge major ranges and subranges in a bottom up order. By progressively
merging each subrange with the next level major range finally we will
obtain a loop which iterates in the maximal major range, and where all
of its subranges are nested inside the loop. Such merger of subranges
may not always be possible. For example, if type 4 subscript expression
is used in the distinguished dimensions of a component, the precedence
relationship will prevent us from scheduling this component into the
scpe of a loop.

- 116 -

I

1I
When a set of components with a subrange and a major range are

merged into the scope of a loop, the major range will be used as the
loop range and the value of elements of the indirect indexing vector
will be checked to evaluate only the elements which are within the
subrange. An instance of the subrange is executed for each stepping up
by 1 of the indirect indexing vector. The computation of the indirect
index should precede the computation of any node within the subrange.
This introduces an additional precedence relationship.

We will treat subscript expressions of types 5, 6, and 7 similar to
types 1, 2, and 3, respectively, in checking the consistency of
subscript expressions of the distinguished dimensions as discussed in
section 6.2.1. If a check of the subscript expressions of the
distinguished dimensions fails, i.e. some type 4 subscript expressions
are used or the subscript expressions do not connect distinguished
dimensions of the components, we will treat these indirect subscript
expressions of type 5, 6, and 7 as type 4. If the check succeeds, we
will add edges in the Array Graph from the indirect indexing vector to
the nodes referencing it. This is similar to the addition of edges from
a range array to the nodes referencing the range array.

6.4 MEMRY EFFICIENCY

In some cases the sam memory space may be shared by a number of
variables, thereby using memory storage more efficiently. Small savings
of memory space are not worth the cost of the analysis. For example,
sharing memory space among few scalar variables does not save much
memory space. Our approach will concentrate on having elements of the
same array share the memory space. Since the range of each array
dimension is in general large and there are several dimensions, the
saving should be considerable. It should also be noted that memory
space is statically allocated to the variables in the produced program.
Compared with dynamic memory allocation, static memory allocation has
the advantages of simplifying the program control in that there is no
need to allocate memory space at run time. This also facilitates
efficient random access of array elements.

Three alternative approaches to allocating memory are used:
1. Physical Dimension

If all the elements along some array dimension have different
* memory spaces assigned to them, the memory space allocated is

proportional to the range of the array dimension. This method of
allocating memory will be referred to in the following as the
physical dimension.

. 2. Virtural Dimension
If all the elements along some array dimension share the same
memory space, a single element memory space serves for the entire
array dimension. We will refer to this method of allocation as
virtual dimension.

3. winoW, o21 ydth k
In some cases there is no need to store all the elements in an
array dimension in main memory. But an array reference of the form

- 117 -

A(I-k) makes it neeseary to keep k+l array elements in main memory
at any moment. This type of memory allocation will be referred to
as window of width k+l.

For every array dimension we have to decide how the memory space is
to be allocated. The memory allocation decision is related to the
program execution sequence. Different program schedules may require
different memory allocation approaches. For example, Fig. 6.5 shows two
different schedules for copying a file. The one which reads all the
records into the main memory then writes them out takes more memory
space than the other one which copies the file, record by record.

A (<A91>')

al (<al,I>)

B ('BI>)

S, hedule-I Schedule-2

DO I;
PEAD(A(I))

END; DO I;
RZAINCACI));

DO I ; B(I) A(I) ;
B(I) = A(:) ;RITE(B(I)) ;

END ; END ;

DO I
WRITE(B(I))

END ;

Fig. 6.5 Two schedules for coping a file

in the following we will show how the mmory allocation decisions
are influenced by the program schedule and how the memory space
requirement for the program variables is evaluated.

i- 11-

6. 4.1 EVALATION OF MEMORY USAGE

We will first consider in what units we should allocate memory
space. If a data structure or substructure is used as an argument of a
function or an operation, the whole structure must be passed between

program modules. The relative position of its constituent elements
become important to the computation. Therefore we can not allocate
memory space to its elements separately. On the other hand, economic

allocation of memory space requires that the unit be as small as

possible. We will require that all the operations operate on fields.
Operations on higher level structure must be therefore transformed into

operations on elementary data structure. The memory space will
therefore be allocated in the unit of fields.

The array dimensions above the unit data structure will be
considered as logical array dimensions for which there may not be
corresponding physical dimensions in the allocated memory space. One of
the three approaches mentioned above may be used to allocate memory
space. Since a virtual dimension requires less memory space than a
physical dimension, we would not physically allocate memory space to an
array dimension unless it is necessary based on the logic of the
specification. In the following we will discuss the conditions when an
array dimension has to be physical or window of width k.

The values of data structures may be produced by some program
activities such as reading an input file or evaluating an expression,
and consumed by some other activities such as writing an output file or
referencing an expression. If the production and consumption of the
elements along an array dimension does not proceed in a planned order
then all the array elements that are produced can not be discarded. All
must be stored simultaneously in main memory.

Given a program schedule we can check whether the program
activities which produce or consume the values along an array dimension
are all in one loop. If not, that array dimension should be a physical
dimension. If all the definitions and references of an array are in the
same loop, we should further check whether any type 2 or 3 subscript
expressions are used, because the occurrence of I-k type subscript
implies the necessity of keeping previous k elements while computing a
new array element. Thus the memory space for the array dimension should
be a window of width k+l. It should be noted that if an array has its
distinguished dimension using either a finite window or a physical
dimension memory allocation scheme, all the loop for array dimensions
which are scheduled nested inside the current loop have to be of
physical dimensions. This is illustrated in Fig. 6.6, where a two
dimensional array A is computed by a nested loop. Suppose the outer
loop iterates over the first dimension of A, i.e. cA,l3. The presence
of subscript expression 1-1 requires a memory allocation scheme of
window of width two for <A,l17 dimension. Since the array element of A
is computed row by row and the computation of array elements in one row
depends on the value of array elements in the previous row, therefore,
we will have to allocate two rows of memory space for array A.

- 119 -

,.

al: A(IJ) IF I=1 THEN f(J)
ELSE g(A(I-1) J) ;

(a) MODEL specification

DI ; _Array AI

DO J

al(IJ)
END ; .. A(I,J)

END;

(b) Schedule (c) .tr=zy requirement

Pig. 6.6 Effect of window dimension on the outer loop
over dimensions on the inner loops

After the memory allocation approach for every array dimension has
been determined, we can estimate the memory space requirement, which
will serve as a measure of the program quality. Given an N dimensional
array A, we can define the required memory space N for a node subscript
cAi as follows.

N(,A,i%)- I if the ith dimension is virtual,
- k if using window of width k,
- upper bound of R((A, i,) if physical.

If an array dimension is not physical, the upper bound of its range is
not used in calculating the memory requirement. The upper bound is
needed to estimate the memory space for a physical dimension. Sometimes
the range of an array dimension is specified by an assertion and the
upper bound is not known until run time. In that case we can only
assume the upper bound is infinity unless the user has specified an
upper bound of the range in the data description statements. The memory
space for array A is the product of M(<,,i,)'s for all the dimensions of
A. The total memory requirement of a program is the sum of the memory
space used by every array variable.

- 120-

6.4.2 MD4RY PENALTY

Analysis of the loop scope leads to the selection of the memory
allocation scheme for the respective array dimension. The memory
penalty of a loop is defined as the memory cost of the arrays included

in the loop scope. The memory cost is the difference in memory
requirements between the ideal case (virtual dimension) and the memory
requirements if the loop is formed. In order to evaluate the memory
penalty of a loop, we first find all the nodes whose memory allocation
scheme is influenced by the construction of the considered loop.

Whenever an Array Graph edge crosses the loop boundary, a source or
target node of the nodes in the loop will be outside of the loop.
Either one of the two nodes may require using the physical memory
allocation scheme. For example, if an edge from a data node to an
assertion node crosses the loop boundary, (i.e. the data node is in the
scope of the loop while the assertion node is outside), the data node is
defined in one loop and referenced outside it. Therefore, its array
dimensions have to be physical. Similarly if the edge crossing the loop
boundary is from an assertion node to a data node, the dimension of the
target node has to be physical.

Each node under consideration may fall into one of the following
three categories and the memory penalty can be computed accordingly.
1. A physical dimension for a distinguished dimension. This category is

recognized by the existence of an edge which crosses a loop boundary.
The memory requirement in ideal case is taken as that of a virtual
dimension. The memory requirement for a loop is computed by
multiplying the upper bounds of all the unscheduled dimensions and
the dimension that is considered for a loop. The difference is the
penalty of the loop for this array.

2. A virtual dimension for the distinguished dimension. In this case
the loop boundary is not crossed by edges and all the subscript
expressions on its distinguished dimension are type 1 subscripts.
The memory penalty for a virtual dimension should be zero.

3. A window of width k+l for the distinguished dimension. Similar to
the virtual dimension category. No edges would cross the loop

boundary. However subscript expressions of the form I-k on its
distinguished dimension are allowed. The other unscheduled
dimensions are considered to be physical dimensions. The penalty is
computed similar to the first category.

Example Consider the memory penalty of a loop shown in Fig. 6.7. The
ranges of subscripts I and J are 10 and 20 respectively, and every
data element occupies one unit of memory space. The memory
requirements in ideal cases for node A, B, C, and D are 1, 1, 1,
and 1 respectively. The memory requirements if the loop is formed
will be 10, 40, 1, and 200 respectively. Arrays A and D have to be

physical and the first dimension of array B needs a window of width
2. The memory penalty for this loop is the difference of 251 and
4, i.e. 247 units of memory space.

-121-

HiI ',i

(.

X
loop on I

A (I) I MP(A) = 10 - 1 =
MI

I(I) I

B _IJ) MP(B) = 2 * 20 - 1 * 1 39

(1-1,J) i

C (Ij) MP(C) = 1 1 - 1 * I 0I I
(I,J) I

D (!,J) M'P(D) = 10 " 20 - 1 * 1 199

L. - . ._

Fig. 6.7 Example of computing memory penalty

Information about the unscheduled dimensions may be used to compute
the penalty more accurately. For example, some array dimensions must be
physical dimensions because of the use of type 4 subscript expressions.
During the process of scheduling, we can accumulate such information to
speed up the memory penalty evaluations.

6. 5 A HEURISTIC APPOACH TO MD=RY-EPICIENT SCHEDULING

In general, there is a large number of schedules which can realize
the computation of a program specification. The schedule with the
minimal total memory requirement will be called an absolute optimal
2KogXM. In principle it should be possible to enumerate all the
possible schedules for an Array Graph, as there is a finite number of
the, and then evaluate the memory requirement of each schedule. We
would thus be able to find the absolute optimal schedule. For several
reasons this method is not practical. The program events being
scheduled are low level activities represented by nodes, i.e.
statements and variables, and an Array Graph may easily consists of

-122-

several hundred or even thousands of nodes. Also the nodes in the Array
Graph may be multi-dimensional and the number of combination. of
Possible nested loops is very large. Further, the constraints on the
feasible schedules are complicated. Thus enumerating all the feasible
schedules would be prohibitive, and an exhaustive examination of all the
feasible schedules to find the absolute optimum is not acceptable.

Instead we have adopted the heuristic approach as follows. Given
an Array Graph as input, we first construct an acyclic component graph
with the MSCCs in the Array Graph as nodes. Our objective is to
repeatedly merge components in the component graph into blocks which
correspond to loop scopes. This process will be applied repeatedly to
the levels of nested loops. On the first application it will produce
the outer level loops. The blocks are formed by merging as many
components as possible which have the same or related ranges. The
process is repeated for each lower level of the nested loops, based on
the subgraph that corresponds to the higher level loop. This process
may not result in the absolute optimal program as the outer level loop
scopes are determined without the analysis of the effects of inner loop
structures on the use of memory space. However considering the effect
of inner loops on memory usage is a complex process and it represents a
large increase in the number of alternatives that must be evaluated.
The scope of the major loops in a program are maximized in our proposed
approach and there is no, or little, effect of inner loops on memory
usage. Thus this heuristic approach represents a good compromise
between the amount of analysis involved and the payoff in reducing
memory usage.

On each level of loops, the scheduling process consists of a trial
scheduling for every range set in the corresponding Component Graph. A
loop for the range R will enclose only the components which have
dimensions in the range set associated with range R. The range sets
related to R (through sublinear indirect indexes) will later be merged
with the blocks of range R. The maximum loop scope for every range R is

the range set of R.

The trial scheduling of each range set consists of finding the
closure of the range set and an attempt to schedule nodes in the set
which may be within the scope of the respective loop. We first merge
into a block the components in the range set which do not have any
predecessors in the closure of the range set. Progressively we will
merge into the block other components which depend on those in the
block, as far as possible. The merger involves selection of a
distinguished dimension in each component, as described above. At the
end we evaluate the memory penalty of the loop scope obtained by the
trial scheduling. The loop with the smallest penalty will be scheduled
finally. This process will be repeated with the unscheduled portion of
the graph until all the components in the Component Graph are scheduled.

There are many possible orders for merging components in the
closure of a range set, to form the scope of a loop. For example, we
may arbitrarily pick a component in the middle of the Component Graph
and merge it with its neighbor components or start with a component on
which no other components depend and merge the components backward.
However, considering all the possible orders of mergers will further

- 123 -

. I

increase the number of alternatives that must be evaluated. The order
of mergers is unimportant in the case where the whole range set can be
scheduled in one loop, i.e. it is the case that all the array
dlimnsions may become virtual. No matter in what order we merge t1he
coponnts, we wli finally get the same loop scope. Again, we select d
the forward merging of the Component Graph as a good compromise betweet
quality of the schedule and the amount of analysis.

It is necessary next to order the blocks associated with outside
level loops in an execution sequence order. The memory cost will be the
same for any order that maintains the precedence relations between these

r blocks. We choose to order the blocks by topological sorting. For
every outer level loop we mark the distinguished dimensions of the
blocks as scheduled.

We apply the scheduling algorithm recursively to each inner nested
level loop by considering only the subgraph which contains the nodes in
one loop scope. The resulting schedule will be the body of the outer
level loop.

We will illustrate this process with an example of scheduling the

Array Graph shown in Fig. 6.9. Every node is a SCC by itself, and the

initial Component Graph is in fact the Array Graph. The candidater ranges are R(,A,1>) and R(eB,l:). Assume that the repetition numbers
are 500 and 200, respectively. The range set of R(cA,1l%) contains three
nodes: A, al, and C. The closure of (A, al, C) is itself. If weI schedule the whole set into one loop, the penalty will be making array B
physical. On the other hand, the trial scheduling of the range set of
R(c,,1,) contains two nodes, B and al. If this set is scehduled in one
loop, the penalty will be making both array A and C physical. We will
select the loop of R(gB,1,) since the size of array B is greater than
the sum of the sizes of array A and C. We mark the component B and al
as scheduled. There are two components left to be scheduled. We have
no alternative but to schedule each of them in a separate loop. The
resulting schedule is shown in Fig. 6.8(b).

- 124 -

*D I

IG

DO J 0
ENT)

DO I

G

END

Fig. 6.0(b) TIhe outer level loop structure

-125-

6. 6 THE SCHEDULING ALGORITDM

The scheduling algorithm, called SCHEDULE, is documented below.
The overall process is illustrated in Pig. 6.9. The solid lines show
procedure calls and the dashed lines show passing of parameters and
returns. The SCHEDULE process starts with construction of a reduced
form of the Array Graph, which will be modified in the course of
scheduling and is also easier to manipulate. It then calls a recursive
procedure SCHEDULEGRAPH. This procedure accepts an Array Graph as
input and returns a schedule as output. SCHEDAJE_GRAPH calls on a
number of procedures to perform its tasks. It calls first the procedure
STRONG to construct a Component Graph out of the reduced Array Graph (or
subgraphs of it in recursive calls).

Next, the major iteration in SCHEDULE_GRAPH schedules the outer
loop scopes. This iteration repeats until all the components in the
Component Graph have been scheduled. This major iteration loop finds
first all the candidate ranges.

Next there is a nested iteration for trial scheduling of all the
candidates ranges. It consists of calls to four procedures. Procedure
INDRSUB is called first to find the range sets of each candidate range.
If a candidate range has some subranges related to it, the sets of the
subranges will also be included in the major range set. CLOSURE is then
called to get the subgraph for the closure of the range set. Then
MhXSCHED is called to do a trial scheduling. MAXSCHED accepts as
input a subgraph which consists of the closure of a respective range set
and returns as output a loop scope which contains components in the
closure of the range set that have been trial scheduled. The trial
scheduling consists of repeated mergers into a loop scope of the
components in the closure of the range set which do not depend on any
other components. As a component is merged into the loop scope, it is
deleted from the subgraph of closure of the range set. The merger
repeats until no more components can be scheduled. Procedure EVALUATE
is then called to compute the memory penalty associated with the loop
scope.

At the end of the nested iterations for all the candidate ranges,
SCHEDULE_GRAPH selects the loop scope with the smallest penalty. It
will eventually form a part of the final schedule. The components in
the selected loop scope are first merged into a single component and
then marked off in the Component Graph.

The above major iteration loop is repeated, as noted above, until
the Component Graph is empty. The outer loop scopes are thus all found.
The corresponding components are topologically sorted. It is necessary
then to find the nested loop scopes, if any, for each outer loop scope
subgraph. As SCHEDULEGRAPH selects the next component in the
topological sorting, it calls the procedure EXTRACT to extract these
subgraphs, which correspond to the selected loop scopes. Each of these
subgraphs must be internally scheduled. EXTRACT calls SCHEDULE_GRAPH
recursively, to schedule each of the subgraphs. A component that is not
within a loop scope needs not be further internally scheduled.

- 126 -

-O=oay Graph- I

* S
a I

*

i

W

lgor--, thS m , le-.

Fig. 6.9 Various components of the scheduling
algorithm

Global Data Structure for SCHEDULE

The reduced form Array Graph, constructed by the SCHEDULE procedure,
consists of a list of elements of type GNODE, with the following fields:
NXTGODE - A pointer to the next element in the list. (At the

generation of the reduced form Array Graph all the GNODEs

-127-

JJ

form a single list. During the process separate lists
will link the GNODEs in each MSCC.)

NODE_ID - The node number of the element in the dictionary.
SUXL - A pointer to a list of edges connecting this element to

its successors. Initially this is identical to the
SUCCLIST list. As the process proceeds, some of the
edges are removed from this list.

The components in the reduced Array Graph are found by the procedure
STRONG. STRONG modifies the list connecting the nodes in the Array
Graph to form separate lists for each MSCC.

The initial number of components in a Component Graph is denoted as
COPw_CNT. Every component is assigned a component number from one to
COMPOCT. The component graph is defined in the following four vectors.
1) NODELST(COMP_CNT). Points to a list of GKODE elements in the Array

Graph which belong to the respective component.
2) ACOHP(COMP_CNT). A boolean value showing whether the component

exists in the component graph or not. In the course of the process,
when a component is merged into some other component, its
corresponding ACOMP bit is reset.

3) INCMP(COMPCNT). A boolean value showing whether a component has
been scheduled or not. Once a component has been scheduled, its
corresponding bit will be reset. Thereby it will not be scheduled
again.

4) CEDGES(COMPCNT). Points to a list of edges which originate from the
component and end at its successor components. Every element in the
list has two fields. One field contains the component number of its
successor and the other is a pointer which points to the next edge.

A subgraph of the Component Graph can be represented by a bit vector
like INCOP. If a component is in the subgraph, its corresponding bit
will be set. Otherwise, the corresponding bit will be reset. In the
following, all the subgraphs of the Component Graph will use this
representation.

The finally generated program schedule is structured as a list of
schedule elements. There are four types of schedule elements:
node-element, for-element, simul-element, and cond-element. A
node-element corresponds to a primitive program event in the generated
program such as the computation of an assertion, opening a file, reading
a record. A for-element corresponds to a loop in the program. The body
of the loop is also represented by a schedule list and pointed to from
the for-element. Similarly, a simul-element corresponds to an iterative
computation for a simultaneous block and points to a list in the body of
the iteration. The cond-element is used to represent a conditionally

2 executed block which corresponds to the scope of a subrange. It will
point to the respective body list.
1) A node-element is a structure NELMNT, with the following fields:

NXTIXU - Pointer to the next element in the schedule.
NLt._TYPE - Equal to 1, denoting this is a node-element.
NODES - The node number.

2) A for-element is a structure FELMNT, with the following fields:
NXTJLI - Pointer to the next element in the schedule.
FIM_TYPE - Equal to 2, denoting this is a for-element.
EUMW.LIST- Pointer to a program schedule which is the body of the

- 129 -

loop.
FOR-NANE - The dictionary node number of the loop variable.
FOR.-RANGE - The dictionary node number where the range of the loop

variable is specified.
3) A simul-element is a structure SEIAT which is used for a

simultaneous equation block. It has the same structure as FELmT
with FLM_TYPE equal to 3.

4) A cond-element is used for a conditionally executed block. It has a
similar data structure as FELMT except that the field FL4N_TYPE is
always equal to 4.

Algorithm 6.1 SCHEDULEGRAPH
Input.

G: A pointer to the reduced Array Graph which is represented by a
GNODE list.

L: The nesting level L.
output.

A program schedule for the input graph G.
Data Structures.

GSIZE(COPCNT): The number of nodes in a component.
MINFREE(COMPCNT): The minimum of the number of unscheduled

dimensions associated with any node in a component.
SUBRNGR(SRNGSET,$RNGSET): A boolean matrix which shows the

subrange relationships. If the jth range set is a subrange of
the ith range set, then SUBRNGR(i,j) will be set to 'I1B.

RNGVEC($RNGSET): For each range set, it indicates the node number
of the indirect indexing vector which reduces the major range
into this range set, if any.

1. Call procedure STRONG to find out all the MSCCs in the Array Graph G
and then construct a Component Graph with each MCC as a node.
Initially all the components are put in the Component Graph and the
corresponding ACOMP and INCHP bits are set to '11B.

2. For each component, compute the corresponding element of the vector
GSIZE, which is the number of nodes in the component, and the
corresponding element in the vector MINFREE, which is the minimum of
the number of unscheduled dimensions associated with any node in the
component. Also compute the SUBRNGR matrix by scanning the indirect
subscript expressions used in the assertions, and the vector RNGVEC
which gives for each range set number the node number of the
indirect subscript, if any.

3. If a component has MINFREE-O, it is not to be scheduled in any loop.
We will mark it off from the Component Graph by setting the
corresponding INCHP bit to '0'B. This component will be a single
component block.

4. Repeat step 5 to 11 to schedule all the outer level loops, until all
components in the Component Graph have been marked off.

5. Select the ranges of node dimensions which are not yet scheduled and
where the respective range does not have real arguments of
unscheduled subscripts. The selected ranges can be scheduled in the
outer level loops. The ranges of those node dimensions will be the
candidate ranges.

6. Repeat step 7 to 10 for each range candidate. Steps 7 to 10 consist
of a trial scheduling of a range candidate Ri.

7. Call procedure INDRSUB. This procedure computes a subgraph S which

- 129 -

contains all the components which are in the range set of Ri or the
* range set of a subrange of Ri. S is represented as a bit map

similar to INCNP.
B. Call procedure CLOSURE to find the subgraph S'-closure(S).
9. Call procedure MLSCHED with subgraph S, and range candidate Ri as

input parameters to form a loop scope Li which contains a subqraph
of S'. Li is represented as a bit map similar to INCIP.

10. Call procedure EVALUATE to compute the ummory penalty of Li.
11. Choose the loop Lj with the smallest memory penalty. Merge all the

components in Lj into one component, say Ck, by modifying the list
pointed to by the NODELST of Ck to include all the GNODEs in the
other merged components. ACOMP, IMCMP, and CEDGES vectors are also
modified to reflect the new component. Then set INCH(k) to 'OB to
mark the whole loop scope off from the Component Graph.

12. Do a topological sort over the resulting components of the component
graph where each component corresponds to either a single node or a
loop scope in the schedule to be returned.

13. Schedule each component separately. If there is no distinguished
dimension for the nodes in a merged component, a node-element will
be formed for the component. Otherwise, call the procedure EXTRACT
to form a for-element for the component.

Algorithm 6.2 STRONG
Input.

G: A pointer to an Array Graph.
lmOutput.f NODELST: A list of components which are the CCs of the input

graph. Every component is represented by a list of GNODE
elements which belong to the component.

1. Clear the stack, the component count, the list of components
NODELST, and the variable COUNT. For each node v in the graph G set

MPNUMER(v) = 0
2. For each node v in the graph G such that DFNUMBER(v)-O call SEARC(v)

to add the components reachable from v to the component list NODELST.
3. Return the component list as the result.

Alaorithm 6.3 SEARCH
Input.

vs A node in a graph which is not examined yet.
Output.

The NODELST for all the XSCCs reachable from node v.
1. Set COUNT to COUNT+l and DFNrJMBR(v), LOWLINK(v) to COUNT. Push v

on the stack.
2. Repeat the following substeps for each node w, a direct descendant

of v.
2.1 If DFNUKBER(w)-O, call SEARCH(w) and then let

LWLINK(v)-min(LOWLINK(v), LOWLINK(w)).
2.2. Else, if DPFNUBER(w)O and w is on the stack, then let

WDWLINK(v)-min(DFNUDMD w),LOWLrNK(v)).
3. If OWNLINK(v),DFNWUDER(v) then return.
4. Else, LOWLINK(v)-DF NU1NBR(v). Node v is a root of a strongly

connected component. All the elements (above and including v) on
the stack are successively popped off the stack and linked into a
list - a subgraph which is defined as a component. This component
is placed on the top of a list of components pointed to by the

- 130-

=.

variable COMP_LIST. In addition a unique component number is
assigned to each node w in the current component.

Alaorithm 6.4 INDRSUB(,RANGGI)
Input.

RANGE: A candidate range (a range set number).
Output.

GI: a subgraph which contains all the components in the range set of
RANGE and the components in the range sets of the subranges of

RANGE which can be included in the loop scope of RANGE.
1. Construct a subgraph GI which contains all the components in the

Component Graph which have an unscheduled dimension with the range
RANGE. GI is represented in a bit vector similar to IMOW. Set
GI(k)-1's if the kth component is in the range et of RANGE. The
edges from these nodes are given in CEDGES.

2. If RANGE has no subranges, return GI as the result. This
information stored previously in SUBRNGR matrix, which shows the
subrange relationships.

3. Otherwise, repeat step 5 to 8 for each immediate subrange RNGIK of
RANGE.

4. Call IMDRSUB recursively with RNGIK as input parameter and GIK as
the output parameter. GIK will contain the components which can be
scheduled in the loop of RNGIK.

5. Call procedure CLOSURE to compute the closure of GIK in the
Component Graph. Then put the closure into G0K.

6. Set the union of GI and GIK into GI. (Note that this may be
reversed in step a.)

7. Call NAX.SCHED procedure to do a trial scheduling for subgraph GI.
a. If the subgrpah GI can not be scheduled completely, then at least

one node, and possibly more, will have to be physical. Also the
range specification of the subrange may become necessary. Therefore
we decided that in this came it is not worthwhile to merge the range
set of RNGIK with the range set of RANGE and GIK is taken out of or.

9. Return Gi as the result.

lMorithm 6 .5 CLOSURE(COWS)
Input.

COMS(CONP_CNT): A bit vector with a set of components marked by
'1'B. Other components are marked by '0'B.
The algorithm also uses the global data structures (ACOMP andCZDGES).

Output.
CC01MS: A bit vector with the closure of the set of components in

the input marked by 1'B. Other components are marked by '01B.
1. Create a bit vector WMCW (size COWP_CNT) with the components in

ACOMP marked except the components in COMS are merged into one
component. This also involves creating a vector NCEDGES sizilar to

r CGES except reflecting the merger of the components in COMPS.
2. Find all the MSCCs in the new component graph (consisting of the new

vectors NACOW and NCEDGES).
3. Locate the MSCC which includes the components in COMPS.
4. Construct CCOWS, a bit vector (size CONP_CNT), with all the

components in the MCC marked. This is the closure set of the
input.

- 131-

4_[

a - t ..

Alaoritk 6.6 NARLSCHED
Input.

, INCH: A bit vector where a set of yet unscheduled components is
marked by 'l'1. Other scheduled components have a value 101B.
Note that these unscheduled components are the basic MScCs found
by STRONG. The function of NAX_SCHED is to schedule as many of
the marked components as possible.

NERCGOIP: A bit vector with the closure of a range set marked by
'l'B.

RANGE: The candidate range (range set number).
Output.

COMPS: A bit vector with the components, which have been trial
scheduled in a loop, marked by 1 1B.

POSITION: A vector (size is DICTIND- the number of nodes in the
dictionary). The position in each scheduled node of the
distinguished dimensions that corresponds to the loop parameter.

1. Initialize the POSITION entries to 0.
2. For each component i, if INCHP(i)-'l'B (i.e. it is not yet

scheduled), MERGCMP(i)-'iB (i.e. it is in the closure set), then
search the CEDGES vector and set PREDCNT(i) to number of
predecessors in HERGCMP. If PREDCNT(i)-O then put component i into
a list of candidates to be trial scheduled.

3. Repeat steps 4 to a until the list (referred to in step 2) is empty.
The function of steps 4 to 8 is to merge one component from the list
into the loop scope represented by COMPS.

4. Remove a component, say Ci, from the list. Search through the
NODELST of Ci, if there exists a node v with POSITION(v))O (i.e.
its distinguished dimension has been determined in a previous
iteration), then set PIRSTNODE=v, and go to step 7.

5. Else, arbitrarily pick any node of the component. Let it be denoted
by v. Set PIRSTNODE-v.

6. Search the subscript list of node v until finding a dimension j that
has not been scheduled in a loop scope (i.e. IDwITwmO) and its
range is the same as the RANGE parameter. If found, then
POSITION(v)-j. If none found then this component should not be
scheduled in the loop scope. Therefore go to next iteration (i.e.
end of step 9).

7. Propagate the distinguished dimension of node v repeatly until all
the nodes in Ci have their distinguished dimensions defined. During
each propagation step:
7.1 Propagate the distinguished dimension forward along the edges

originated from node v to all the nodes at the terminating end
of the edges.

*7.2 If the node to which a distinguished dimension is propagated
does not belong to Ci then do not further propagating the
distinguished dimension from this node forwards.

7.3 If propagation is not possible to any node in Ci because of type
4 subscript expression then the current iteration may be
terminated, i.e. go to end of step 9.

B. The current component can be merged into the loop scope. Set
COSWS(i)-,1,3.

9. Search through the list pointed by CEDGES(i). For every edge
from Ci to Ck set PREDCUT(k)-PREDCNT(k)-l. If PREDNT(k)-O,
INOW(k)-°I-B, and MERGCHP(k)-'l'B, then put Ck into candidate
list.

-132-

Alaoriths 6.7 EVALUATE
Functions Given a loop scope, compute the resulting penalty in use of

memory. This procedure is called after each trial schedule for
a range candidate and again after the final schedule was
selected.

Input.
COMS£ A bit vector of size COWP_CWT with the bits correspondning to

components in a loop scope equal to '1'B.
EVAL_SET: A bit denoting whether EVALUATE is called to evaluate

memory penalty of a trial schedule or for the selected schedule,
in which came the selected memory allocations are recorded in
SIVTYP.

Output.
PENALTY: The memory penalty of the loop scope, in bytes.

Data structure.
SRCPHY, TOTM: When an edge in an Array Graph crosses a boundary of

a loop scope then, depending on the type of the edge, the memory
allocation for the data node at the origin or terminating ends
of the edge may have to be physical. The SRCPHY bit vector
denotes for each type of edge (there are 29 types) whether the
memory allocated to the node at the origin end of the edge (the
source node) must be physical. Similarly, the TGTPHY vector
refers to the node at the terminating end of the edge (the
target node).

NRAL: The memory requirement, in bytes, after the loop is formed.
NRIC: The memory requirement in the ideal case.
STOTYP: A field in the data structure LOCALSUB. For a virtual

dimension, STOTYP-0. For a window of width k+l dimension,
STOTYP-k l. For a physical dimension with upper bound u,
STOTYP-u.

1. Repeat steps 2 to 6 for every edge in the Array Graph. Each
iteration computes the effect of the edge on use of memory.

2. If the source and the target nodes of the edge are in COMPS, this is
an internal edge, then go to step 6 to examine the subscript
expression of the edge to determine its effect on use of memory.

3. If both the source and the target nodes of the edge are not in
COMPS, then this edge has no effect on memory useage. Go to end of
iteration, at end of step 6.

4. If none of the above then this edge crosses the loop boundary. In
this case, if SRCPHY(EDGETYPE)-I, then the distinguished dimension
of the source node must be physical. If TGTPHY(EDGE_TYPE)-l, then
the distinguished dimension of the target node must be physical.
The respective node numbers and the requirements for physical memory
allocation are stored in a list. Also in this case go to the end of
the iteration (at end of step 5).

S. 1 5. If the subscript expression is of the form I-k and
SRCPHY(EDGE_TYPE)-l, then the memory allocation for the
distinguished dimension of the source node must be a window of width
k+l. This is also stored in the list.

6. PENALTY is initialized to zero.
7. Repeat steps 8 to 11 for every node in the above list. These nodes

have either a physical or window of width k+l memory allocation. An
iteration computes the memory requirment for a respective node.

8. In the case of a physical distinguished dimension, compute MRAL, as
the product of all the ranges of the unscheduled node subscripts.

- 133-

In the cae of a window of width k+l for the distinguished
dimension, compute NRAL as the product of k+l and the ranges of the
other unscheduled node subscripts.

9. To compute MURIC it is necessary to scan each unscheduled node
subscript. If its storage type STOT P is 0, then the ideal memory
requirement for this dimension is one. If STOTYP,0, the memory
allocation has previously been determined am physical, then the
ideal memory requizeent is -STOTYP (u). MRIC is the product of
these ideal ranges.

10. The penalty for the array node NDPENALTY- (MRAL-MIC)*(length of
node element in bytes).

11. PENLM -PENALTY+NDPENRLTT.
12. If EVALSET- 11B then if the distinguished dimension is physical

then s'TOP in every unscheduled dimension is equal to the minus of
its range, if the distinguished dimension is a window of width k+l
then STOTTP of the distinguished dimension is k+l and for the other
unscheduled dimensions STOTYP is the minus of their respective
range.

Algorith M r
Function: To obtain the for-element for a loop, including the schedule

elements for the body of the loop scope.
*, Input.

SUBGRAPH: A pointer to a reduced Array Graph of the component
scheduled into one loop scope.

SVPOSITIrOI: A vector with an element for every node in the SUBGRAPH.
Each element has the value of the dimension number of the
distinguished dimension of the respective node.

L : The nesting level.
Output.

A for-element which is the schedule of the input graph.
1. Allocate a for-element. Set FORWM to loop parameter name and

FOR_RRANz to the range set number of the loop parameter.
2. If the current loop range has some immediate subranges, then call

procedure COND_GRAPH and upon return go to step 7. CONDGRAPH takes
over all further scheduling of a body of a loop which contains
conditionally executable nodes due to use of indirect subscripting.

3. Delete all the edges from the graph with distinguished dimension
subscript expressions of type 2 or 3. The precedence expressed by
these edges is assured by the order of the iterations.

4. Set IIWITH of the distinguished dimension of all the nodes in the
subgraph to L, the nesting level of the current loop.

5. Call SCHDUFzGRAPH, with SUBGRAPR and L+1 an the parameters, to get
the schedule of the resulting graph.

6. Set ELMNTLIST in the for-element structure to point to the schedule
returned from step 5.

7. Return the for-element am output.

Aloorthm 6,9 COQ-DGRAPH(TOP.RAZN,G1 RH)
Function s To obtain the schedule elements of the body of a loop scope,

which includes cond-elements.
., input.

nTOP_ M The range set number of the highest level major range in
the SGRAPE.

SGRAPH: A graph to be scheduled within an iteration block of the

-134

range TOPP.AN.
* Output. A schedule for SaRAh.

1. Scan all edges in SGRAh. If an edge has a subscript expression in
the distinguished dinsion of types 2, 3, 6, or 7, and either the
source or the target nodes have the TIOPRANG range, then delete
this edge from SGRAPH.

2. If node X is the indirect indexing vector served to reduce the range
TWP_RR to a subrange mIGIK, then draw an edge from X to all the
nodes in the range set of RMGIK.

3. Call procedure STRONG to form a Component Graph for SGRAPH,
consisting of ACOUP and IC3HP, CEDGES, and MODELST. ACOW and 130W
are bit vectors (the size is the number of WSCC found by STRONG).
These vectors are all of the value '1'.

4. Por every subrange RNGIK of TOP_RAG, merge all the components in
the range sets of RNWIK or its direct and indirect subranges into
one component. Set the INCIP vector elements of the merged
components to '0'B.

S. Repeat steps 6 to 9 until all the elements in INCHP are '0'B. Each
*iteration merges a group of components with TOPRANGE range.

6. Call CLOSURE with ENCHP to obtain the closure set NERGE._OIP.
7. CALL UX_.SCHED with INCHP, MERG-CQ P, and TOPRANGE. It returns

CCOMPS.
S. Merge the components in CCONPS into one component, updating NODELST,

CED=, ACOMP, and INCMP.
9. Set the element of ENCHP corresponding to the merged schedule to

,08.
10. Repeat steps 12 to 13 for the components in ACOMP.
11. Select the next component in ACOMP in a topologically sorted order.

Let this component be COMI.
12. Let RNGIK be the range of the component COMI. If RNGIKOPRANGE,

then mark the distinguished dimension of each node in the component
am scheduled and call procedure SCMHEJL-GRAPH to get a schedule for
this component. Go to step 14.

13. Otherwise, allocate a cond-element to this component. Call
procedure COND_GRAPH recursively with RNGIK and COMI am the input
parameters to get a schedule for the conditional element.

14. Return the schedule elements obtained am the final schedule of
SGRAPH. Note that the order of the schedule elements was determined
by the selection of components in a topologically sorted order in
step 11. The schedule elements are obtained either in step 12 or
13, depending on whether they are cond-elements or other elements
respectively.

135

- 1315 - .

~1

CHAkP'ER 7

CODE GEMERNTION

7.1 OVERVIEW OF THE CODE GENIEATIOt PROCESS

Code Generation is the last phase of the processor. It uses the

data structure generated in Array Graph construction, specification
analysis, and program scheduling. As shown in Fig. 7.1 the code
generation process accepts two inputs: the program schedule created in
the scheduling phase and attribute tables produced in the analysis
phase. Recall that the program schedule is an ordered sequence of
schedule elements described in section 6.6. The nodes referenced in
schedule elements can be found in the dictionary. The attributes of the
respective nodes are in the dictionary. They are described in the
section 4.2.1. The output is a complete PL/I program ready for
ompilation. The exscutable PWI code is written out to the "PLIEX"
file. The PL/ "OW" conditions are written to the "PLION" file and the
PWI code for declaring the object data items is written to a "PL1DCL"
file.

Program _.

Schedule

CODE GENERATION .P ogram

Attribute ________-i! Tables

Fig. 7.1 Overview of the Code Generation Phase

Fig. 7.2 shows the overall organisation of the code generation

proces, conisting of the main procedur CODE which In turn calls on

-136-

th other prceure to perform certain tasks. The P/I execution code
bs oerated by the G Ts procedure which ex s the aleents of
the schedule one at a tim, and invokes the procdurs i that flo
indiateod by typ s of proram events. The GgLaDCL prcdur gnerate
the data declarations. GEMKTZ calls GM_NOD to generate sttemnt

for node eleents of the schedule. The G _NOM calls an GEKXCD for
Input-output opxerations and on GENASSR for assrtions. GENERTE as
M114B GMDO and GEEN for generating iteration control structures for

for--Ients, and on COWBLIK and CONDELD for generating conditional
block sttmnts for cond-slesents. Theme procedures are briefly
reviewed in @action 7.2. They are described in greater detail togetheri
with other auxiliary tasks in the subsequent sections that follow.

Program

ScheduleFL/I

Attribute COLJ --- Program
Tables

,-U
GE. GEN .11 M

MIlD BTX CONDEM

MzOCn MASSR

Files used:

PLDL
Fig. 7.2 Components of Generating PL/I Code

- 37 -

I-

7.2 THE 1MAJOR PROCEDURES FOR CODE GENERATION

7.2.1 CODEGEN - THE MAIN PROCEDURE

CODZGDI starts with opening the output files PLIEX, PLION, and

PLDCL . It next generates code that will handle program errors. Most
of these errors are due to input data errors discovered by data type
conversions in the program. The user can also define additional error
conditions. The statements written to the PLIEX file are as follows:

ALLOCATE ERROR, ACCERROR j
ACCERROR - 10'B
ALLCATE $ERR_-LAB p

SERRLAB - EDPROGRAM
The declarations written to the PLIDCL file are as follows:

DCL (ERROR, ACCERR, NOTDONE) CTL DIT(1)
DCL SERRLAB LABEL CTL ;

Finally the ON condition code is sent to the PLION file as follows:
ON ERROR
BEGIN

/* write erronous input record to ERRORF file */
WRITE FILE(ERRORF) FROM(SERROBUF)
ERROR - 9'B ; /* set error flag
GO TO $ERRLAB / /* go to end of loop where -/

END ; /* error was detected
ERRORRESTART:

CODEGOD next pauses the entire program schedule to GENERATE, which
will generate the portions of the program for the schedule elements.
When this is completed CODEGEN passes the attribute tables to GPLIDCL to
generate data declarations. Finally CODEGEN calls on MERGEPL1 to merge
the three output files.

7.2.2 GENERATE - INTERPRETING SCHEDULE ELDIENTS

This recursive procedure scans the schedule given by the list of
schedule elements, LIST, for a loop nesting level LEVEL. To start with,
CODEGEN passes the whole schedule at level 0. In subsequent calls
GENERATE will receive a schedule of a loop scope at each nesting level.
GENERATE calls lower level procedures to process the different types of
schedule elements as follows:
1. Scan each element of the list LIST. For each element perform steps 2

to 4.
2. If the element is a node-element call GENNODE which will generate

the code for the schedule element.
3. If the element is a for-element do the following:

3.1 Call GEDDO to produce a code for opening a loop.
3.2 Call GENERATE recursively with the list of the elements within

the loop's scope and level - LEVEL+1.
3.3 Call GEDEND to generate the termination of the loop.

4. If the element is a cond-element do the following:
4.1 Call COND_BLK to produce the code for opening a conditional

block.

-130-

4 °

4.2 Call GENERATE recursively with the list of the elements within

the condition block and level - LEVEL.
4.3 Call COND_DND to generate the termination of the conditional

block.

7.2.3 G=%DO - TO INITIAT THE SCOPE OF ITERATIONS

This procedure produces the code for a control statement initiating
an iteration loop. The loop variable name FORME and the termination
criterion are taken from the fields FOR_NANE and FOR_RANGE in the
for-element being scanned.

The following instructions are intended for recovery from a program
error. They always precede each loop control statement: I

ALLOCATE ERROR, ACERROR
/f reset accumulative error flag */
ACCWERR - 'O'B
ALWCARTE $ERRJARB
SERRADB - LOOPENDc

The "c" following LOP_END is a unique number assigned to the loop. The
purpose of these statements is to ensure that an error occurring within
the loop scope will cause the control be directed to LOOPENDc which is
a label immediately preceeding the end of the loop.

The DO-statement itself is constructed next. Two basic forms for
the loop control statements are used:

DO name = 1 TO upper (WHILE (condition) J p
2)

name - 0
DO WHILE (condition) p

nAme - name+l
"name" is the loop variable. "condition" is the termination condition.

If the termination criterion given is that of a fixed upper limit
or given through a SIZE variable, the first form is used and "upper" is
either a constant number or a variable of the form SIZE$X.

If the range is specified by an END.X control variable, the second
form of loop control is used. In this case we use NOTDONE in the
condition and the following statements are generated before the
beginning of the loop:

ALLOCATE NOTDONEp
NOTDONE - l'D ;

NOTDONE will be reset to ''U whenever the appropriate D.X variable
is set to 'true'.

If there in an end-of-file condition associated with tte iteration,
either as the main termination condition, or because this is an
iteration on an input record or group above the record level which are
last in their peer group, we add:

'ENDIFLE3file

i - 139 -

to the condition "condition".

7.2.4 GENEND - TO TERMINATE THE SCOPE OF ITERATIONS

This procedure produces the code needed at the end of the loop
scope. Since at times, we use k+l locations to store a window of size
k+l of an array, it is necessary on each iteration to shift the window
by one element position. This is done at the end of the iteration. The
size of respective window is originally stored in STOTYP of the node
subscript of each array node. GENERATE passes the node numbers of
arrays using window dimensions in a list called PREDLIST to GENEND.
Based on this list GENEND generates statements to shift the window by
one element position. The actual range declared for a window dimension
is k+l. In each iteration we compute (or read) A(... k+l, ...) and may
refer to the previous element as A(..., k, ...). When an iteration is
completed we transfer A(.... I+1) to A(..., I,...) for I from 1 to
k.

After producing a sequence of these shifting operations we produce
the label:

LOOPENDc: ;
where "c" is the unique count associated with the current loop. If the
termination criterion for the loop was through an END.X control variable
we also produce the code:

IF END.X THEN NOT-DONE - 'O'B
This has to be done at the end of the loop since the value of END.X at a
given iteration determines whether this iteration will be the last.

After this we produce the following statements:
3THPERROR - ACCERROR;
FREE ERROR, ACCERROR
FREE 3ERRLAB ;
IF STMP_ERROR THEN ERROR, ACCERROR - ''B

If the termination criterion was through an END.X control variable
we also produce:

FREE NOT-DONE;

7.2.5 COND_BLK - INITIATE A CONDITIONAL BLOCK

This procedure produces the code necessary to initiate a
conditional block. The conditional block will be executed within the
iteration only when the value of the indirect subscript is increased.
The indirect subscript node number is stored in the FOR._RANGE field of
the cond-element being scanned. An IF-statement is generated to test
the above condition. Inside the conditional block we will use a new
symbol for the indirect subscript. For example, if X(I) is the indirect
subscript then we define a new subscript J-X(I). Let 'old-sub' denote
the subscript running in the major range, i.e. I. The 'new-sub'

- 140 -

abm~- -

denotes the new representation of the indirect subscript, i.e. J. A
boolean variable, $S3X, indicates whether the conditional block should
be executed. The code to compute 38-X is generated by GEN_.NODE when the
node X is scanned in the schedule. The new-sub is of the form $Xn where
'nt is a unique number associated with this conditional block. The
following declaration statements are issued:

DCL $Xn FIXED BIN ;
DCL sB.X BIT(l) ;

The following codes is then produced:
IF $BX THEN DO ;

new-sub - X(... , old-sub) j

7.2.6 CONDEND - TERMINATE A CONDITIONAL BLOC

This procedure produces the code at the end of a conditional block.
The above IF-statement has been generated by COND_BLK. Here we issue an
'END* statement to terminate the IF-statement.

7.3 GEN_NODE - CODE GENERATION FOR A NODE

This procedure generates the code associated with a schedule
node-element. It branches to different parts according to the types of
nodes.

7.3.1 PROGRAM HEADING

If the node is a module name (type MODL) we produce the code:
name: PROCEDURE OPTIONS(MAIN) j

This code is routed to the file PL1DCL.

7.3.2 FILES

If the node is a file node (type FILE) we first generate three
names. "file_stem" is the file name with prefixes "NEW" or "OLD"
removed, if any. "name" is the full name of the node, including all
prefixes. "filesuff" is the filestem with the suffix of 'S' for
source file, IT, for target file, and J'O for update file (both source
and target). The following declaration statements are routed to PL1DCL
file.

DCL names CHAR(length) VARYING INIT(' ') ;
DCL name_INDX FIXED BIN ;

"length" is the mumimim length of records in the file. "nameS" is the
name of a buffer into which records in the file are read. (It is

- 141 -

4J

VARYING as the file may have more than one record type, with different
lengths.) "namesINDX" is a variable used to scan the buffer for packing

and unpacking the records (explained further later).
1. If the file is an input file we produce the statement:

OPEN FILE (filesuff) j

2. If the file is a sequential input file and an end-of-file is not
explicitly mentioned by the user, we produce the declarations:

DCL ENDFILEfile_stem BIT(l) INIT('O'B)
DCL SFSTfile-suff BIT(l) INIT('iB) ;

routed to PLIDCL file. If the user explicitly mentioned the
end-of-file variable then these statements will be generated when the
declaration are generated for all variables by GPLIDCL.

The statements:
ON ENDFILE (filesuff)
BEGIN

ENDFILESfile-stem = 11iB
name_S - COPY(' ',length) p

ENDp
are sent to PLION file. The purpose of these statements is to have
the file buffer filled with blank characters when an end of file
condition occurs.

3. If the file is an output file we produce the statement:
CLOSE FILE(filesuff) p

7.3.3 RECORDS

If the node is a record (type RECD) we call GENIOCD to produce the
code for the reading or writing of records.

7.3.4 FIELDS

To process fields GEN_NODE calls procedure GENITEM. GEN_NODE also
calls CHECK_VIRT to find if the node has a windowed dimension. If the
field node is an indirect subscript, X, the following code is issued.

IF loop_var-l THEN DO ;
bname - 11'B; rname - 0; END p

EL IF X(loopvar) X(loopyvar-l) THEN DO p

bname - l'B; rae - 0 END ;
ELSE DO p
bname -0'B; mane - 1; END p

where loopvar is the current level loop variable, bname is of the form
SBX, and rname is of the form SRX. Recall that bname indicates
whether the associated conditional block will be executed. rname will
be used to compute the index to reference an element such as
A(X(loop-var)) in the case that array A has a windowed dimension. This
is explained further later in connection with the code generation for
assertions.

- 142 -

7.3.5 ASSERTIONS

If the node is an assertion we call the procedure GENASSR to
produce the code for an assertion.

7 .4 GENASSR - GENERATING CODE FOR ASSERTIONS

This procedure generates code for assertions. The main task of
GENASSR is to transform the syntax tree representation of the assertion
into a string representation acceptable by the P/I compiler. The
transformation is carried out by a recursive climb on the syntax tree,
combining for each node the string representations of the descendant
subtrees into a string representation of the tree rooted at that node.
However, before performing the main task the procedure transforms
assertions containing conditional expressions into conditional
assertions. Thus, an assertion of the form:

Y - IF (IF XO THEN YO ELSE Y4-0) THEN X*Y
ELSE -X*Y;

will be transformed into:
IF X3O THEN IF Y)O THEN Y - X*Y

ELSE Y - -X*Y;
ELSE IF Y=-O THEN Y - X*Y

ELSE Y - -X*Y

The overall execution of GENASSR can therefore be summarily
described an%
1. Transform assertions with conditional expressions into conditional

assertions.
2. Form the string representation of the assertion.

7.4. TRANSFORMING CONDITIONL EXPRESSIONS

This task is carried out by the procedure SCAN which uses the
auxiliary procedure EXTRACT-COND.

7.4.1.1 SCAN (IN)

The procedure SCAN effects the complete transformation of
assertions containing conditiopal expressions into conditional
assertions. The procedure is presented with an assertion pointed to by
IN, and returns a pointer to the transformed assertion. The steps in
this procedure are as follows:
1. Check the root of the tree pointed to by IN to see whether it is a

simple assertion or a conditional assertion. If it is a simple
assertion then go to step 5.

2. We oheck next if the conditional assertion contains conditional

-143 :

expressions. A conditional assertion has the form:
IF COMD THEN S1 ELSE S2

where Sl, S2 are assertions.
SCAN calls EXRAC1_COND to check whether COND contains a conditional
expression. If COND contains a conditional expression, then
EXRACT_COND returns C, L, and R which are the parts of COMD as
follows:

COND - IF C THEN L ELSE R.
Otherwise, go to step 4.

3. If a conditional expression is found in COND then:
3.1 SCAN then transforms the tree (pointed to by IN) into a tree INI

which consists of the form:
IF C THEN IF L THEN Si

ELS2
ELSE IF R THEN Si

MLS 2
3.2 SCAN calls SCAN(IN11) recursively to further search for

conditional expressions in IN1 and return a transformed
conditional assertion.

3.3 The transformed assertion is returned by SCAN.
4. If COND does not contain embedded conditional expressions, then there

are two recursive calls to SCAN for the assertions S1 and 52 in IN.
SCAN then returns the following assertion and exits.

IF CORD THEN SCAN(Sl) ELSE SCAN(S2)
S. In the case of a simple assertion:

Y E.
SCAN calls EXTRACTCOND(E) to search for conditional expressions in
E. If none found, then assertion Y - E is returned unchanged.
Otherwise, XTRACTV_COD returns C, L, and R which are the parts of 2
as follows:

2 - IF C THE L ELSE R.
6. If E contains conditional expression, then SCAN calls SCAN(IN2)

recursively, where IN2 points to a tree of an expression of the form:
'IF C T!MI Y - L

ELSE Y - R1
The return from the recursive call on SCAN is returned by SCAN as the
transformed assertion.

7.4.1.2 EXTRACTCOND(ROOT,COND,LEPT,RIGT)

This procedure identifies and extracts the leftmost conditional
expression in a given expression pointed to by ROOT.

If a conditional expression is found the (pointer to the) condition

is returned in COND and its first (THEN) and second (ELSE)

subexpressions returned in LEFT and RIGHT respectively. If the analyzed
expression contains no conditional expression the procedure returns NULL
in COMO.

Its operation is as follows:
1. Inspect the top level node of the given syntax tree.
2. If it is a conditional expression, return respectively the condition,

- 144 -

I II1

the subexpression following THEN, and the subexpression following
* ELSE, then exit.

3. If the expression is a simple expression, i.e. a constant or a
variable, return NULL and exit.

4. If the expression is a compound expression, scan each of its
descendants by calling EMCWTR_COND recursively. Consider the first
COMO, LEFT, and RIGHT which are returned such that COND is not equal
to NULL. In general, a compound expression is of the forms

E - g(El,...,Fn)
Assme that the recursive scanning of El, ... , Em produces first COND
not equal to NULL for Zi where lr-i,-m, returning also the THEN and
ELSE ubexpressions L, and R respectively. Then the current call for
9 returns:

COND as the condition,
g(El, ... ,Ei-1,L, ... ,Ea) as LEFT, and
g(El, ... ,Ei-1,R, ... , Em) an RIGHT.

Thus the overall effect of EXTRACT_COND on an expression E is to extract
a condition C if one exists in E (returned as COND), and then to compute
E1 when C is true, and E2 when C is false. E1 and E2 are returned in
LEFT and RIGHT respectively. Described in another way we look for C,
El, and E2 such that the following equivalence holds:

9 - IF C THEN El ELSE E2
In particular this gives:

q(El Ei-l,(IF C THEN L ELSE R), ... Em)-
IF C THEN g(El, ... ,Ei-l,L,.... r)

ELSE g(El, Ei-l,R,....n).

7.4.2 PRINT - TRANSFORMING THE ASSERTION INTO STRING 703

This procedure is presented with a pointer to an assertion syntax
tree and it converts the assertion tree into a string representation.

The procedure branches according to the types of the nodes in the
assertion tree.
1. If the node is a subscripted variable A(El,...,b) we generate the

string A(,. We then scan each of the subscript expression El to Em
and add them to the string according to the following subcases:
1.1 if the dimension at position i corresponds to the dimension

declared for repetition of a record and the variable A includes
the prefixed 'NEXT', then
1.1.1 If the dimension is scheduled as a window of width k+l we

insert the subscript value k+2.
1.1.2 If the dimension is scheduled as physical and the

expression Ei is a constant c, then insert the value of
c+l. (See further below.)

1.1.3 If the dimension is scheduled as physical and Zi is an
expression we call PRINT(Ei) and insert the returned value
concatenated with 1 +1'.

1.2 If the dimension at position i is scheduled as a window of width
k+l, in this case the physical allocation for the array dimension
is k+2 elements with the k+lth element standing for the current
value and the k+2th element standing for the field in the next

- 145 -

record. The different subscript expressions are handled as
follows:
1.2.1 if it is a simple subscript then we insert an integer k+l

as the subscript.
1.2.2 If the subscript expression is I-c, then an integer k+l-c

is inserted.
1.2.3 If the subscript expression is X(I), then k+l-$RX is

inserted where k+l-$R _X points to the element A(X(I)). If
X(I)-X(I-l) then $R_X is equal to 1, and if X(I)-X(I-l)
then eR.X is equal to 0. (The code to compute eR.X is
generated by GENODE right after node X is scanned.)

1.2.4 If the subscript expression is X(1)-c, then k+l-SR_X-c is
inserted as subscript.

1.2.5 If the subscript expression is X(I-a), then
k-X(r-1)-X(I-a)] is inserted as the subscript.
X(I-i)-X(I-a) is the offset of A(X(I-a)) to A(X(I-l)) which
is stored in the kth element of the window for the ith
dimension of array A.

1.2.6 If the subscript expression is X(I-a)-c, then
k-X(1-1)-X(I-a)]-c is inserted as the subscript.

1.3 If the ith dimension of array A is physical and Ei is the
subscript expression, we call PRINT(Ei) and insert the returned
value.

2. For all other compound nodes we call PRINT recursively to convert the
descendants and insert between them the string representation of the
separators, operators, and delimiters. The latters are stored in the
OP_CODE fields as integer codes. The integer codes are translated
into the operator representation using the array KEYS and then
inserted.

3. Por atomic nodes we use the variable name either directly or through
its node number. Loop variables (subscripts) are accessed through
the level indication available in their IDWITH field which is used as
an index to the array L0OPVARS. Function names are retrieved by
their function number indexing the table FOIMG.

7 .5 GEKIOCD - GZNERATING INIwP/OUTWPUT CODE

ZIOCD is invoked by COOEGEN upon scanning a schedule elesent
which corresponds to a record node. It accepts as input the node number
in the schedule element. NIOCD generates PVI READ, WRITE, or REWRITE
statements with the appropriate parameters, based on the attributes of
the file, a well as the control code or condition code associated with
the .nput/output operation.

Table 7.1 summaizes the different statements generated by GENIOCD
for the different cases. Each of the different cases in Table 7 .1 shows
the conditions defining the case and the statements which are generated
for the case. The upper case letters represent the part of the actual

WI string being generated, whereas the lower came letters are the
metanames of the items obtained from the program schedule elements.

-146-

several preparatory steps are taken before branching to the
different cases.
1. Definition of names: We generate several variable names derived from

the record name that will be used in the code. Let the record name
be designated by rec.

1.1 If rec is of the form OLD.X or NEW.X we define recnme as OLD..X
or NEW_X respectively.

1.2 Otherwise we define recnam as rec.
1.3 Rabuf is defined as recnameS.
1.4 Recindx is defined as recname_INX.

Consider now the file which is parent to rec. Let it be denoted by
fil.
1.5 Set filename to fil.
1.6 If fil is of the form OLD.X or NEW.X set filename to OD_X or

NWX respectively and filesuff to file-namU.
1.7 Otherwise set filesuff to filenameS if the file is a source

and to filename if the file is a target.
1.8 Set eof to EMDFIL$fil_name.
1.9 Retrieve the keynam associated with the record, if one exists,

and assign it to keyname.
1.10 Set found to FOUNDSfile_name.

- 2. Issue the following declarations.
DCL recbuf COR (lendat(n))
DCL reclnd FIXED]$IN INIT(I)

This declares a buffer for the record into which and out of which the
information will be read or written. 'Len-dat(n)' here gives the
buffer length.

3. If the record is an output record, the instruction for moving the
data from each field into the record buffer will be generated.

4. If the record is an output record and a SUBSET condition was
specified foz it we enclose the code for writing the record by the
condition-

IF SUBDETSrec THEN DO i
code

The procedure DOREC produces the code for reading and writing of
records. It branches according to the cases in Table 7 .1.

- 147 -

Table 7.1 The Various owes of program I/O control

Case 1 An Input Sequential and Monkeyed Record.

The following code is produceds

IF SFSTfilemsuff THEM DO ;
D FILE (filosuff) nM (rebuf)

SrSTfilesuff - '0'8
IND)

ELSE reabuf - filebuf j

recindx-l
1F AZD ILESfile-name TRW
READ FILE (file.suff) INTO (filebuf) g

EWR-DEU - recbuf ;
The movement of the data to the individual fields will be done in

conjunction with the nodes corresponding to the fields (see
GX4IYD). The next record is always read into file buffer so that
we can unpack the data for the MM record.

Case 2t Input, Sequential and Keyed Record.

Ensure that the following reclarations have been issued,
DCL PVoUNDrec BIT(M)
DCL PASSEDOrec BIT(1)

SJissue now the code:
FOUMD$rec, PASSED$rec 1 0' 1

DO WHILE(ADIDILESfilename £ -PASSEDSrec)
RED FILE (filesuff) INTO (recbuf)
(code for extracting the key field)
IF keyname - POINTWrec THEN

FOUNDSrec, PASSEDSreC - '1'B
ELSE IF keyname POINTERSrec T E

PASSDSreC - ''B

recindx - 1
Case 3: Input, Nonsequential (ISAM), Keyed record.

Verify that the declaration
DCL POUNDSre IT(1) g

has been issued. Then issue the code:
VOIDrec I Il1'D
ON KEY (file-suff) FOC -rec D'

REAd PILE(filesuff) INTO(recbuf)
* KEYC POITmSrec),

recindx - 1 ;
Case 4: Output, Sequential Record.

Issue the following codes
recindx I

Call P C procedure to pack Its fields into the record buffer. Then
issue the codes

RITE FILE(filesuff) FPI recbuf) p

CAe 53 Output, Nonsequential, Keyed and an Update Record (both MEW and
OLD specified)

K Issue the following codes

41 - 146-

rIcirdx - 1 i
Call PACK procedure to pack its fields into the record buffer. Then
issue the codes

REWRITE FIL(file_suff) Fr(recbuf)
KY(POINTZRSrec)

Case 6: Output, onsequential and Keyed Record.

Issue the following codes
recindx - 1

Call PACK procedure to pack its fields into the record buffer. Then
issue the code:

WRITE VILE(filesuff) PROK(recbuf)
KEY(POINTERrec)

7.6 PACKING AN UNPACKING

After a record is read we unpack its fields from the record buffer
and place them in the respective declared structures. Similarly before
a record is written we pack its fields into the record buffer. The data
movement is performed by individual transfers of fields. The transfer
statements may be interleaved with other statements which control the
iteration over respective fields' dimensions. The transfer instructions
for unpacking are generated elsewhere, in conjunction with the schedule
elements associated with the input field nodes. The code for packing an
output record is generated in GENIOCD and inserted right before the
record buffer is to be written out.

7.6.1 PACK - PACKING THE OUTPUT IELDS

k The procedure PACK is called by GENIOCD in the case of an output record.
It accepts a node number (NODES) as input. It checks the type of the
node NOES. If the node is a field, it calls DO_.Y to generate the
code for packing. Otherewise, it considers in turn each descendant of
the node YOES. For each descendant D it calls PAMKl(D) recursively.
PACKI: This procedure generates code for packing a node which may or

may not repeat.
1. If the node is a repeating group or a field we get the termination

criterion of the repetition.
2.1 Open a loops Call procedure GMDO to generate the DO-statement

for opening the loop.

1.2 Call the subprocedurs PACK to issue code for packing a single
element of the node.

1.3 Call procedure GOfhD to generate the code for terminating the
loop.

2. If the nod& is not repeating then,

Call procedure PACK to generate the code for packing all the
constituent members of this node.

DO.FWs This procedure is responsible for producing code to pack a
field F into record buffer. It uses the procedure FIELDW to

- 149 -

generate the following code.
SUBSTR(recbuf, recindx, lenstring) - F
recindx - recindx+lenstring

FIEWPIK is described further below.

7.6.2 GEITEN - UNPACKING THE INPUT FIELDS

This procedure is called to generate code for unpacking information
from an input buffer to an input field. GLNODC calls GENITEN upon
scanning a schedule element of an input field. GIITUI accepts as input
the node number in the schedule element. The READ statement for reading
the record to a buffer is generated by GENIOCD when the record node is
scanned. GENIT first finds for a record R the names of the input
buffer RS and the packing counter RINDX. Next, GENITD(calls an
auxiliary procedure FIELDWPK, which generates the code for unpacking.

The GENITDI procedure is as follows:
1. Determine the name of the record containing the current field. Lot

it be rec. Then we construct a buffer name: recS and a buffer
index name recINDC. tat the field's name be in the variable
"field".

2. If the corresponding field in the next record is referenced, then
call FIELDW to unpack the field from the file buffer.

3. Call FIELDYK to generate the code for unpacking the field from the
record buffer.

7 . 6.3 FIELPK - PACKING AND UNPACKING FIELDS

The procedure FIEWPK produces the code for both the packing and
unpacking operation. Input parameters are the field name, buffer name,
record index name, and a code (CASE) to indicate whether the field has a
N prefix.
1. If the length type of the field is fixed, i.e. specified in the data

description statements, we compute its length directly. If the
field's type is 'C', '3', or IP', denoting respectively character,
numeric or picture, we take the declared length. Otherwise we will
coqute the length of the field in bytes from its declared length and
type. The string representing the length is stored in "lenstring".

2. if the length of the field was declared by specifying lower and upper
bounds we check that there exists a control variable of the form

*L.field for this field. If none exists we issue the error message:
VIELD P s NO LUN= SPECIFICATION FOR THE FIELD-field.

3. If a LW.field control variable is found we sets
lenstring - LEM.field

The byte-lngth of the field will be computed during run time.
4. If the field is an input field we generate the instructions

WISlUC(field) - SUDSTR(raec_, recINX, lnstring)
If the sam field in the next record is referred in the
specification, we will unpack the file buffer to get the

- ISO-

corresponding field in the next record. For output field we
generate:

STMR(recS,rec_IX, lenstring) - KISPEC(field)
Here "field" is the nanm properly subscripted and "lenstring" is the
length specification. If the field is of type 'C', the LriSPWc
qualifications will be omitted.

5. If the CASK code indicates that the field name does not have prefix
NEU then we generate the following code to update the buffer index,

rec_INDX - rec_INDX+enstring ;
There is no need to update recrNDX if the unpacking is for a NEC
prefixed field.

7.7 GDMM E MG THE PGRAK EROR FIZZ

If a program error condition is induced during the execution of the
generated program, then an input record, read during the iteration
execution when the program error was induced is written to an error
file, EWRF. The required code for writing the bad input record to the
error file is generated by the routines CODE4 and GhIOCD. For
exanple, the following IL/I code is included in PLION file:

Om ERWR BEGIN ;

WRI1T FPILE(KROF) FROKO ERR...DUF)Ii GO TO S13R..AB
After the GZNIOCD generate the code to read a record from an input file
it also generates a statement to copy the input record into *ERMO,_ .

7.8 GPL1DCL - GDIER&ING PWI DECLRATIOR

This procedure generates the declarations for the data nodes
declared by the user and those added by the system. As noted

previously, som declarations are also generated by other procedures
during the code generation.

The main part of GPLIDCL is as follows:
1. For each file F in the specification (available from the list PFLIST)

call

to declare F and all its descendants.
2. For each node N in the specification which is an interim variable or

a control variable, call

D2CZA.STRUCTJRL(N)
3. For each subscript which has been used, issue the declaration:

DCL uubnams FIXED BIN p

- 151 -

7. * . 1 DECULAN&STRUCITJRE - DECLARING A STRJC'IURE

This procedure is called by GPL1DCL. The input is a file node
number. It declares the entire file structure. It issues the
declarative: DECLARE, and then proceed to call DCL_STR(N,1,0).

7.9.1.1 DCLSTR(N, LEVEL, SUX)

This recursive procedure produces a declaring-clause for each node
N in the structure. 'LEVEL' is the current level in the structure. SUX
is a termination criterion stating whether there is a next node on the
same level (younger brother) or a descendant.
1. Some Preliminary transformations are made on the declared node names.

1.1 File names of the form NEW.F and O-D.? are modified to NEWJ_ and
OLD respectively.

1.2 The group names, record names, or field names are reduced to
their stem (removing prefixes).

2. For control variables the resulting declaration is:

For SIZE, and LEN names:
nam FIXED BIN,

while for all other names:
name BIT(l).

3. The declaration includes in general the following items:
LEVEL - The component level.
Name - The declared name.
Repetition - The number of physical storage elements.

Type - The data type.
The data type is determined as follows:

For character fields - CHAR(len) [VARYING]
For numeric fields - PIC '99 9'
For picture fields - PIC 'picture'
For fixed binary - BIN FIXED(len, scale)
For fixed decimal - DEC FIXED(len,scale)
For binary floating - BIN FLOAT(len)
For decimal floating - DEC FLOAT(len)

In the above 'len' is the specified or default length for the field.
The VARYING option is taken if the length is specified (for strings)
by a minimal length and a maximal length.

Repetition is defined in STOTYP of the node subscripts of the
fields. If an array dimension is virtual we omit the repetition

indicator. If an array dimension is a window of width k+l, the
repetition is set to k+l. Otherwise, the array dimension must be a

physical dimension. The node subscript list of the field node is
scanned, and the repetition indicators for array dimensions are
concatenated and put into a variable REP. If R is not an empty
string, we will append the string '(REP)' after the declared field
name.

4. For each of the descendants of the node N, call
DCL_STR(N, LEVEL+1, termination) recursively.

Ji - 152-

1 7.*9 CGUh - CODE G==RTION CONCLUSION

*CWUK has the task of concluding the code generation phase. First,
the different files with the generated PL/Z program (PLM= , PLION,

* PL1EX) are merged into one P14 file (PLlPROG) which can be subsequently
compiled. Secondly, a Code Generation Summary Report is written which
lists the PL/I program. While the PVI listing would not be of much use
to the average MODEL user, it is of interest to the wire sophisticated
user and can serve the system programr for insighc . a? debugging of the
MOL system.

153

* BIBLIOGRAPHY

ADhA 79
Preliminary ADA Reference Manual.
SIGPLRN Notices 14(6)t Part A, June, 1979.

ADB 79
* Rationale for the Design of the ADA Programming

Language.
SIGPLAN Notices 14(6): Part 8, June, 1979.

AH£0 76
Aho, A.V., and Johnson, S.C.
Optimal Code Generation for Expression Trees.
JACm 23(3)t488-501, July, 1976.

AHJO 77
Aho, A.V., and Johnson, S.C.
Code Generation for Expressions with Comuon

Subexpressions.
JACK 24(l):146-160, January, 1977.

AHU 74

Aho, A.V., Hopcroft, J. E., and Ullman, J. D.
The Design and Analysis of Computer Algorithms.
Reading, Mass., Addison-Wesley, 1974.

AHUL 78
Aho, A.V., and Ullman, J.D.
Principles of Compiler Design.
Addison-Wesley, 1978.

ASWA 77
Ashcroft, E.A., and Wadge, W.W.
Lucid, A Non-procedural Language with Iteration.
CAC 20(7):519-526, July, 1977.

DAFI 79
Sauer, J., and Finger, A.

Test Plan Generation Using Formal Grammars.
Fourth International Conference on Software

Engineering, pp. 425-432. September, 1979.

BDAA 76
Barstow, D.R., and Kant, E.
Observations on the Interaction Between Coding and

Efficiency Knowledge in the PSI Program
Synthesis System.

Second International Conference on Software
Engineering, pp. 19-31. October, 1976.

BOKP 76
Bobillier, P. A., Kahan, B. C., and Probst, A. R.
Simulation with GPSS and GPSS V.
Prentice-Hall, 1976.

-154-

BRSE 76
° Bruno, J., and Sethi, R.

Code Generation for a One-Register Machine.
JACH 23(3)t502-510, July, 1976.

BDA 77
Burstall, R. M., and Darlington, J.

A Transformation System for Developing Recursive
Programs.

JACH 24(1):44-67, January, 1977.

CHTH 79
Cheatham, T. E., Townley, J. A., and Holloway, G. H.
A System for Program Refinement.
Fourth International Conference on Software

Engineering, pp. 53-62. September, 1979.

CHHT 81
Cheatham, T. E., Holloway, G. H., and Tou1ley, J. A.
Program Refinement by Transformation.
Fifth International Conference on Software

Engineering, pp. 430-437. March, 1981.

DAM 70
Dahl, 0. J., Nyhrhaug, B., and Nygaard, K.
The SIMULA 67 Co mmon Base Language.
Publication S-22, Norwegian Computing Center, Oslo, 1970.

DAVI 79
Davis, A., et al.
RLP: An Automated Tool for the Automatic Processing

of Requirements.
Proceedings of COMPSAC 1979, pp. 289-299.

DAVI 80
Davis, A.
Automating the Requirements Phase: Benefits to

Later Phases of the Software Life-Cycle.
Proceedings of COMPSAC 1980, pp. 42-48.?

FEW 72
Feldman, J.A.
Automatic Programming.

* .Technical Report STAN-CS-72-255, Stanford University,
February, 1972.

GEM 77
Geschke, C.M., Morris, J.H., and Satterthwaite, E.H.
Early Experience with W.SA.
CACM 20(S):540-553, August, 1977.

GOIH 91

Gokhale, M.
Data Flow Analysis of son-procedural Specifications.

i i - 155 -

Proposal for PhD research. University of
Pennsylvania, July, l9al.

GRAH 90
Graham, S. L.
Table-Driven Code Generation.
IEE Cxoputer, 13(8):25-34, August, 1980.

GREB 81
Greenburg, R.
Simultaneous Equations in the MODEL system with an

Application to Econometric Modelling
Master Thesis, University of Pennsylvania, October, 1981.

GREE 69
Green, C.
Application of Theorem Proving to Problem Solving.
First Joint Conference on Artificial Intelligence,

pp. 219-239. 1969.

GREE 77
Green, C.
The Design of the PSI Program Synthesis System.
Second International Conference on Software

Engineering, pp. 4-18. IEEE Press, October, 1976.

HHKW 77
Hammer, N., Eoe, N.G., Kruskal, V.J.,

and Wladawsky, I.
A Very High Level Programming Language for Data

Processing Applications.
CAO(20(11):832-840, November, 1977.

IVER 62
Iverson, K.E.
A Programming Language.
Wiley, New York, 1962.

KESC 75
Kennedy, K., and Schwartz, J.
An Introduction to the Set Theoretical Language

SETL.
Comp. and Maths with Appls, Vol. 1, pp. 97-119.

Pergamon Press, 1975. Great Britain.

KKPL 81
Kuck, D. J., Kuhn, R. H., Padua, D. A.,

and Wolfe, M.
Dependence Graphs and Compiler Optimizations
In Proceedings of the ACl National Conference,

Pages 207-218. ACl, 1981.

Ilm 80

Leverett, B. W., Cattell, R. G., Hobbs, S. 0.,
Newcomer, J. 1., RMiner, A. H., Schatz, B. R.,

4
-156-

and Wulf, W. A.
An Overview of the Production-Quality-Compiler-

Compiler Project.
IEEE Computer, 13(6):38-49, August, 1980.

LENA 74
Lee, R.C.T., and Waldinger, R.J.
An Improved Program Synthesis Algorith, and its

Correctness.
CACK 17(4):211-217, April, 1974.

LSAS 77
Liskov, B., Snyder, A., Atkinson, R.,

and Shaffert, C.
Abstraction Mechanisms in CLU.
CAC 20(8):564-574, August, 1977.

LYNC 69
Lynch, H.
ADS: A Technique in System Documentation.
Database, 1, 1 (Spring 1969), pp. 6-18.

* 11171
Manna,

Z.
Toward Automatic Program Synthesis.
CACK 14(3): 151-165, March, 1971.

M CU77
McCune, B.P.
The PSI Program Model Builder: Synthesis of Very

High-Level Programs.
SIGPLRN Notices 12(8)s130-136, August, 1977.

NUKO 76
Nunamaker, J.7., and Konsynski, B.R.
Computer-Aided Analysis and Design of Information

system.
CACK 19(12):674-687, December, 1976.

NUNA71
Nunamaker, J.P.
A Methodology for the Design and Optimization of

Information Processing System.
SJCC, pp. 283-294, AFIPS Press, 1971.

PAR 72
Parnas, D.L.
On the Criteria to be Used in Decomposing Syst

into M3dules.
CACd 15(12)si053-l0SS, December, 1972.

PHIL 77
Phillips, J.V.
Program Inference from Traces Using Multiple

*Knowledge Sources.

4 157-

Fifth Joint Conference on Artificial intelligence,
pp. 812. August, 1977.

PNPR S0
Pnueli, A, and Prywem, N.
Operations on Arrays and Data Structures.
Technical Report, MCS-79-0298, University of

Pennsylvania, 1980.

PNPR 81
Pnueli, A, and Prywes, N.
Distributed Processing in the IDDEL System with an

Application to Econometric Modelling.
Technical Report, ICS-79-0298, University of

Pennsylvania, 1981.

RADI 73
Ramirez, J.A.
Automatic Generation of Data Conversion Programs

Using A Data Definition Language.
PhD thesisf University of Pennsylvania, 1973.

RIK 76
Rin, N.A.
Automatic Generation of Data Processing Programs

from a Non-procedural Language.
PhD thesis, University of Pennsylvania, 1976.

SlUNG 90
Sangal,

R.
Modularity in Mon-procedural Languages Through

Abstract Data Types.
PhD thesis, University of Pennsylvania, July, 1980.

SCAN 72
Schneck, P. B., and Angel, E.
FORTRAN to FORTRAN Optimizing Compiler.
The Computer Journal (British Computer Society)

16(4)1322-329, 1972.

SCH 75
Schwartz, J. T.
Optimization of Very High Level Languages-I.
Journal of Coqmputer Languages, Vol. 1, pp. 161-194.

Pergamon Press, 1975. Northern Ireland.

SCHR 73
Schaefer, M.
A Mathematical Theory of Global Program

Optimization.
Prentice-Hall, New Jersey, 1973.

SCHN 75
Schwartz, J. T.
Optimization of Very High Level Languages-U1.

4
-S

Journal of Computer Languages, Vol. 1, pp. 197-218.
Pergasion Press, 1975. Northern Ireland.

SHS 9

Shastry, S.
Verification and Correction of non-procedural

Specification in automatic Generation of
Programs.

PhD thesis, University of Pennsylvania, 1978.

5UM 77
Szolovits, P., Hawkinson, L., and Nartin, W.
An Overview of OWL, A Language for Knowledge

Representation.
Technical Report HIT-LCS-K-86, IT, June, 1977.

"Piz 69
Waldinger, R.J., and Lee, R.C.T.
PROW: A Step Towards Automatic Prograa Writing.
First Joint Conference on Artificial Intelligence,

pp. 241-252. 1969.

WEG 79
Wegner, P.

Research Directions in Software TeOChnology.
NIT Press, 1979.

- 159 -

